Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85606Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 曹承礎(Seng-Cho Chou) | |
| dc.contributor.author | Yu-Tse Wu | en |
| dc.contributor.author | 吳雨澤 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:19:34Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-29 | |
| dc.identifier.citation | B. Liu, “Sentiment analysis and opinion mining,” Synthesis lectures on human language technologies, vol. 5, no. 1, pp. 1–167, 2012. L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, “Target-dependent twitter sentiment classification,” in Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies, pp. 151–160, 2011. S. M. Mohammad, S. Kiritchenko, and X. Zhu, “Nrc-canada: Building the state-ofthe-art in sentiment analysis of tweets,” arXiv preprint arXiv:1308.6242, 2013. S. Poria, E. Cambria, D. Hazarika, and P. Vij, “A deeper look into sarcastic tweets using deep convolutional neural networks,” arXiv preprint arXiv:1610.08815, 2016. P. Chen, Z. Sun, L. Bing, and W. Yang, “Recurrent attention network on memory for aspect sentiment analysis,” in Proceedings of the 2017 conference on empirical methods in natural language processing, pp. 452–461, 2017. S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” arXiv preprint arXiv:1710.09829, 2017. Y. Wang, A. Sun, M. Huang, and X. Zhu, “Aspect-level sentiment analysis using as-capsules,” in The World Wide Web Conference, pp. 2033–2044, 2019. C. Du, H. Sun, J. Wang, Q. Qi, J. Liao, T. Xu, and M. Liu, “Capsule network with interactive attention for aspect-level sentiment classification,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5489–5498, 2019. B. Xing and I. W. Tsang, “Out of context: A new clue for context modeling of aspectbased sentiment analysis,” arXiv preprint arXiv:2106.10816, 2021. V. Perez-Rosas, C. Banea, and R. Mihalcea, “Learning sentiment lexicons in spanish.,” in LREC, vol. 12, p. 73, Citeseer, 2012. X. Ding, B. Liu, and P. S. Yu, “A holistic lexicon-based approach to opinion mining,” in Proceedings of the 2008 international conference on web search and data mining, pp. 231–240, 2008. A. Ramesh, S. H. Kumar, J. Foulds, and L. Getoor, “Weakly supervised models of aspect-sentiment for online course discussion forums,” in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),pp. 74–83, 2015. S. Kiritchenko, X. Zhu, C. Cherry, and S. Mohammad, “Nrc-canada-2014: Detecting aspects and sentiment in customer reviews,” in Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp. 437–442, 2014. L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu, “Adaptive recursive neural network for target-dependent twitter sentiment classification,” in Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2: Short papers), pp. 49–54, 2014. D. Tang, B. Qin, X. Feng, and T. Liu, “Effective lstms for target-dependent sentiment classification,” arXiv preprint arXiv:1512.01100, 2015. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, pp. 5998–6008, 2017. Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based lstm for aspect-level sentiment classification,” in Proceedings of the 2016 conference on empirical methods in natural language processing, pp. 606–615, 2016. D. Ma, S. Li, X. Zhang, and H. Wang, “Interactive attention networks for aspect-level sentiment classification,” arXiv preprint arXiv:1709.00893, 2017. F. Fan, Y. Feng, and D. Zhao, “Multi-grained attention network for aspect-level sentiment classification,” in Proceedings of the 2018 conference on empirical methods in natural language processing, pp. 3433–3442, 2018. Y. Ma, H. Peng, T. Khan, E. Cambria, and A. Hussain, “Sentic lstm: a hybrid network for targeted aspect-based sentiment analysis,” Cognitive Computation, vol. 10, no. 4, pp. 639–650, 2018. J. Weston, S. Chopra, and A. Bordes, “Memory networks,” arXiv preprint arXiv:1410.3916, 2014. D. Tang, B. Qin, and T. Liu, “Aspect level sentiment classification with deep memory network,” arXiv preprint arXiv:1605.08900, 2016. P. Zhu and T. Qian, “Enhanced aspect level sentiment classification with auxiliary memory,” in Proceedings of the 27th International Conference on Computational Linguistics, pp. 1077–1087, 2018. Y. Chen, “Convolutional neural network for sentence classification,” Master’s thesis, University of Waterloo, 2015. B. Huang and K. M. Carley, “Parameterized convolutional neural networks for aspect level sentiment classification,” arXiv preprint arXiv:1909.06276, 2019. W. Xue and T. Li, “Aspect based sentiment analysis with gated convolutional networks,” arXiv preprint arXiv:1805.07043, 2018. X. Li, L. Bing, W. Lam, and B. Shi, “Transformation networks for target-oriented sentiment classification,” arXiv preprint arXiv:1805.01086, 2018. G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with em routing,” in International conference on learning representations, 2018. Z. Chen and T. Qian, “Transfer capsule network for aspect level sentiment classification,” in Proceedings of the 57th annual meeting of the association for computational linguistics, pp. 547–556, 2019. Q. Jiang, L. Chen, R. Xu, X. Ao, and M. Yang, “A challenge dataset and effective models for aspect-based sentiment analysis,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6280– 6285, 2019. B. Zhang, X. Li, X. Xu, K.-C. Leung, Z. Chen, and Y. Ye, “Knowledge guided capsule attention network for aspect-based sentiment analysis,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2538–2551, 2020. Y. Liang, F. Meng, J. Zhang, Y. Chen, J. Xu, and J. Zhou, “An iterative multiknowledge transfer network for aspect-based sentiment analysis,” in Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1768–1780, 2021. M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), (New Orleans, Louisiana), pp. 2227–2237, Association for Computational Linguistics, June 2018. A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language understanding by generative pre-training,” 2018. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018. B. Zeng, H. Yang, R. Xu, W. Zhou, and X. Han, “Lcf: A local context focus mechanism for aspect-based sentiment classification,” Applied Sciences, vol. 9, no. 16, p. 3389, 2019. Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing, “Harnessing deep neural networks with logic rules,” arXiv preprint arXiv:1603.06318, 2016. M. Dragoni and G. Petrucci, “A fuzzy-based strategy for multi-domain sentiment analysis,” International Journal of Approximate Reasoning, vol. 93, pp. 59–73, 2018. J. Wagner, P. Arora, S. Cortes, U. Barman, D. Bogdanova, J. Foster, and L. Tounsi, “Dcu: Aspect-based polarity classification for semeval task 4,” 2014. Z. Teng, D.-T. Vo, and Y. Zhang, “Context-sensitive lexicon features for neural sentiment analysis,” in Proceedings of the 2016 conference on empirical methods in natural language processing, pp. 1629–1638, 2016. Y. Tay, A. T. Luu, S. C. Hui, and J. Su, “Attentive gated lexicon reader with contrastive contextual co-attention for sentiment classification,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3443– 3453, 2018. F. Chen and Y. Huang, “Knowledge-enhanced neural networks for sentiment analysis of chinese reviews,” Neurocomputing, vol. 368, pp. 51–58, 2019. Y. Zhang, P. Qi, and C. D. Manning, “Graph convolution over pruned dependency trees improves relation extraction,” arXiv preprint arXiv:1809.10185, 2018. C. Zhang, Q. Li, and D. Song, “Aspect-based sentiment classification with aspectspecific graph convolutional networks,” arXiv preprint arXiv:1909.03477, 2019. E. Zuo, H. Zhao, B. Chen, and Q. Chen, “Context-specific heterogeneous graph convolutional network for implicit sentiment analysis,” IEEE Access, vol. 8, pp. 37967–37975, 2020. Z. Hu, Z. Yang, R. Salakhutdinov, and E. Xing, “Deep neural networks with massive learned knowledge,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1670–1679, 2016. M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Manandhar, “SemEval-2014 task 4: Aspect based sentiment analysis,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), (Dublin, Ireland), pp. 27–35, Association for Computational Linguistics, Aug. 2014. Y. Song, J. Wang, T. Jiang, Z. Liu, and Y. Rao, “Attentional encoder network for targeted sentiment classification,” arXiv preprint arXiv:1902.09314, 2019. J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532–1543, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85606 | - |
| dc.description.abstract | 意見層面情感分析(ABSA)因其廣泛的應用領域而成為情感分析中的一項重要任務。此任務的目標是識別句子或文章對於給定意見的情感極性。在過去的研究中,使用傳統機器學習方法或神經網絡方法都能達成不錯的表現,而近幾年,許多研究者將膠囊網路應用於ABSA問題上,其研究結果顯示膠囊網路能夠有效的提高準確率。然而,儘管前述的研究取得了不錯的成果,當一個句子或一篇文章有多個不同的意見目標且對於各個意見有不同的情感時,如何正確擷取出有關該意見目標的情感字詞仍然是一個挑戰。在本研究中,我們提出了一個新模型「知識增強膠囊網絡(KECapsNet)」來實作ABSA任務。不同於傳統的膠囊網路,KECapsNet使用如語法結構、局部上下文關係等多種先驗知識來建構初級膠囊,然後利用情感辭典來引導這些初級膠囊並將其轉換為輸出膠囊,這些輸出膠囊將最終決定情感分類的結果。我們在多個資料集上進行實驗,其結果顯示我們所提出的模型能夠達到比現存方法更高的準確率。 | zh_TW |
| dc.description.abstract | Aspect-based sentiment analysis (ABSA) is an important task in the field of sentiment analysis due to its wide applications.The goal of ABSA is to identify the sentiment polarities of a sentence or document toward given aspects. Previous studies using traditional machine learning methods or neural network methods have achieved good performance on ABSA task, while recent research using capsule-based methods have shown that utilizing capsule network on ABSA task can improve the accuracy effectively. However, it is still a challenge to identify the sentiment words to the correct aspects when a sentence or a paragraph expresses different emotions toward multiple aspects. In this paper, we proposed a knowledge enhance capsule network (KECapsNet) for ABSA, which use multiple prior knowledge to enhance the original capsule-based method. We utilize prior knowledge such as syntactic knowledge and local context knowledge to construct the primary capsules in KECapsNet, then the model make the sentiment classification using lexicon-guided routing mechanism, which utilize the sentiment lexicon to guide the transformation of primary capsules to output capsules. We implement the experiment on several benchmark datasets, and the results show that the proposed model outperform the state-of-the-art methods. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:19:34Z (GMT). No. of bitstreams: 1 U0001-2706202214122800.pdf: 528634 bytes, checksum: 4eb0a570a70189b0edcfac279e45535d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgements i 論文摘要ii Abstract iii Contents iv List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Paper Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Related Works 5 2.1 Traditional Methods for ABSA . . . . . . . . . . . . . . . . . . . . . 5 2.2 Neural Network Based Methods for ABSA . . . . . . . . . . . . . . 6 2.3 Capsule Network Based Methods for ABSA . . . . . . . . . . . . . . 8 2.4 Pre-trained Models for ABSA . . . . . . . . . . . . . . . . . . . . . 9 2.5 External Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 3 Methodology 12 3.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Embedding Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Primary Capsule Layer . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.1 Syntactic Dependency Capsules . . . . . . . . . . . . . . . . . . . 14 3.4.2 Local Context Capsules . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.3 Context Encoding Capsules . . . . . . . . . . . . . . . . . . . . . . 17 3.4.4 Aspect Capsule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Output Capsule Layer . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 BERT-based version . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Chapter 4 Experiments 22 4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 Aspect-Category Sentiment Analysis . . . . . . . . . . . . . . . . . 22 4.1.2 Aspect-Term Sentiment Analysis . . . . . . . . . . . . . . . . . . . 23 4.2 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4.1 Results of aspect-category sentiment analysis . . . . . . . . . . . . 27 4.4.2 Results of aspect-term sentiment analysis . . . . . . . . . . . . . . 28 4.4.3 Results of BERT-based methods . . . . . . . . . . . . . . . . . . . 30 4.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.6 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 5 Conclusions 35 References 36 Appendix A — Example of Data 43 | |
| dc.language.iso | en | |
| dc.subject | 圖卷積神經網路 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 膠囊網路 | zh_TW |
| dc.subject | 意見層面情感分析 | zh_TW |
| dc.subject | 圖卷積神經網路 | zh_TW |
| dc.subject | 長短期記憶模型 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 膠囊網路 | zh_TW |
| dc.subject | 意見層面情感分析 | zh_TW |
| dc.subject | 長短期記憶模型 | zh_TW |
| dc.subject | capsule network | en |
| dc.subject | Aspect-based sentiment analysis | en |
| dc.subject | convolutional neural network | en |
| dc.subject | graph convolutional network | en |
| dc.subject | long short term memory network | en |
| dc.subject | Aspect-based sentiment analysis | en |
| dc.subject | capsule network | en |
| dc.subject | convolutional neural network | en |
| dc.subject | graph convolutional network | en |
| dc.subject | long short term memory network | en |
| dc.title | 以「知識增強膠囊網路」實作意見層面情感分析 | zh_TW |
| dc.title | Knowledge Enhance Capsule Network for Aspect-Based Sentiment Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建錦(Chien-Chin Chen),盧信銘(Hsin-Ming Lu) | |
| dc.subject.keyword | 意見層面情感分析,膠囊網路,卷積神經網路,圖卷積神經網路,長短期記憶模型, | zh_TW |
| dc.subject.keyword | Aspect-based sentiment analysis,capsule network,convolutional neural network,graph convolutional network,long short term memory network, | en |
| dc.relation.page | 43 | |
| dc.identifier.doi | 10.6342/NTU202201143 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-01 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| Appears in Collections: | 資訊管理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2706202214122800.pdf | 516.24 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
