請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85605完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳健銘(Chien-Ming Wu) | |
| dc.contributor.author | Yu-Hsuan Fan | en |
| dc.contributor.author | 范祐軒 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:19:33Z | - |
| dc.date.copyright | 2022-07-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-30 | |
| dc.identifier.citation | Arakawa, A., & Wu, C.-M. (2013, 01 Jul. 2013). A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I. Journal of the Atmospheric Sciences, 70(7), 1977-1992. https://doi.org/https://doi.org/10.1175/jas-d-12-0330.1 Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C., Khairoutdinov, M., Lewellen, D. C., Lock, A. P., MacVean, M. K., Moeng, C.-H., Neggers, R. A. J., Siebesma, A. P., & Stevens, B. (2002). Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quarterly Journal of the Royal Meteorological Society, 128(582), 1075-1093. https://doi.org/https://doi.org/10.1256/003590002320373210 Chang, Y. H., Chen, W. T., Wu, C. M., Moseley, C., & Wu, C. C. (2021). Tracking the influence of cloud condensation nuclei on summer diurnal precipitating systems over complex topography in Taiwan. Atmos. Chem. Phys., 21(22), 16709-16725. https://doi.org/https://doi.org/10.5194/acp-21-16709-2021 Chen, F., & Dudhia, J. (2001, 01 Apr. 2001). Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review, 129(4), 569-585. https://doi.org/https://doi.org/10.1175/1520-0493(2001)129<0569:Caalsh>2.0.Co;2 Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan, Q. Y., Ek, M., & Betts, A. (1996). Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research: Atmospheres, 101(D3), 7251-7268. https://doi.org/https://doi.org/10.1029/95JD02165 Chen, W.-T., Wu, C.-M., Tsai, W.-M., Chen, P.-J., & Chen, P.-Y. (2019). Role of Coastal Convection to Moisture Buildup during the South China Sea Summer Monsoon Onset. Journal of the Meteorological Society of Japan. Ser. II, 97(6), 1155-1171. https://doi.org/https://doi.org/10.2151/jmsj.2019-065 Cheng, W.-L. (2001, 2001/10/01/). Synoptic weather patterns and their relationship to high ozone concentrations in the Taichung Basin. Atmospheric Environment, 35(29), 4971-4994. https://doi.org/https://doi.org/10.1016/S1352-2310(01)00295-3 Cheng, W.-L. (2002). Ozone distribution in coastal central Taiwan under sea-breeze conditions. Atmospheric Environment, 36(21), 3445-3459. https://doi.org/https://doi.org/10.1016/S1352-2310(02)00307-2 Cheng, W.-L., Pai, J.-L., Tsuang, B.-J., & Chen, C.-L. (2001). Synoptic patterns in relation to ozone concentrations in west-central Taiwan. Meteorology and Atmospheric Physics, 78(1), 11-21. https://doi.org/https://doi.org/10.1007/s007030170002 Chien, M.-H., & Wu, C.-M. (2016). Representation of topography by partial steps using the immersed boundary method in a vector vorticity equation model (VVM). Journal of Advances in Modeling Earth Systems, 8(1), 212-223. https://doi.org/https://doi.org/10.1002/2015MS000514 Chiu, H.-F., Weng, Y.-H., Chiu, Y.-W., & Yang, C.-Y. (2015). Air pollution and daily clinic visits for headache in a subtropical city: Taipei, Taiwan. International Journal of Environmental Research and Public Health, 12(2), 2277-2288. https://doi.org/https://doi.org/10.3390/ijerph120202277 Garratt, J. R. (1994). The atmospheric boundary layer. Earth-Science Reviews, 37(1-2), 89-134. https://doi.org/https://doi.org/10.1016/0012-8252(94)90026-4 Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., & Vilà-Guerau de Arellano, J. (2010). Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev., 3(2), 415-444. https://doi.org/https://doi.org/10.5194/gmd-3-415-2010 Hsieh, M.-K., Chen, Y.-W., Chen, Y.-C., & Wu, C.-M. (2022, 01/01). The Roles of Local Circulation and Boundary Layer Development in Tracer Transport over Complex Topography in Central Taiwan. Journal of the Meteorological Society of Japan. Ser. II. https://doi.org/https://doi.org/10.2151/jmsj.2022-028 Hsu, C.-H., & Cheng, F.-Y. (2019). Synoptic Weather Patterns and Associated Air Pollution in Taiwan. Aerosol and Air Quality Research, 19(5), 1139-1151. https://doi.org/https://doi.org/10.4209/aaqr.2018.09.0348 Hsu, T.-H. (2021). The Fine Particulate Pollutants Distribution over the Lee Side of Mountains in Taiwan under Consecutive Cold-season Weak Synoptic Days [Master Thesis, National Taiwan University]. http://dx.doi.org/10.6342/NTU202101073 Huang, J.-D., & Wu, C.-M. (2022). A Framework to Evaluate Convective Aggregation: Examples With Different Microphysics Schemes. Journal of Geophysical Research: Atmospheres, 127(5), e2021JD035886. https://doi.org/https://doi.org/10.1029/2021JD035886 Jung, C.-R., Chen, W.-T., Tang, Y.-H., & Hwang, B.-F. (2019, 2019/06/01/). Fine particulate matter exposure during pregnancy and infancy and incident asthma. Journal of Allergy and Clinical Immunology, 143(6), 2254-2262.e2255. https://doi.org/https://doi.org/10.1016/j.jaci.2019.03.024 Jung, J.-H., & Arakawa, A. (2008). A Three-Dimensional Anelastic Model Based on the Vorticity Equation. Monthly Weather Review, 136, 276-294. https://doi.org/https://doi.org/10.1175/2007MWR2095.1 Kuo, K.-T., & Wu, C.-M. (2019). The Precipitation Hotspots of Afternoon Thunderstorms over the Taipei Basin: Idealized Numerical Simulations. Journal of the Meteorological Society of Japan. Ser. II, 97(2), 501-517. https://doi.org/https://doi.org/10.2151/jmsj.2019-031 Kuo, P.-H., Tsuang, B.-J., Chen, C.-J., Hu, S.-W., Chiang, C.-J., Tsai, J.-L., Tang, M.-L., Chen, G.-J., & Ku, K.-C. (2014, 2014/10/01/). Risk assessment of mortality for all-cause, ischemic heart disease, cardiopulmonary disease, and lung cancer due to the operation of the world's largest coal-fired power plant. Atmospheric Environment, 96, 117-124. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.07.024 Leighton, P. (1961). Photochemistry of air pollution. Elsevier. Liang, W.-M., Wei, H.-Y., & Kuo, H.-W. (2009). Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environmental research, 109(1), 51-58. https://doi.org/https://doi.org/10.1016/j.envres.2008.10.002 Ma, J.-W., Lai, T.-J., Hu, S.-Y., Lin, T.-C., Ho, W.-C., & Tsan, Y.-T. (2020). Effect of ambient air pollution on the incidence of colorectal cancer among a diabetic population: a nationwide nested case–control study in Taiwan. BMJ open, 10(10), e036955. https://doi.org/https://doi.org/10.1136/bmjopen-2020-036955 Ridley, B., Madronich, S., Chatfield, R., Walega, J., Shetter, R., Carroll, M., & Montzka, D. (1992). Measurements and model simulations of the photostationary state during the Mauna Loa Observatory Photochemistry Experiment: Implications for radical concentrations and ozone production and loss rates. Journal of Geophysical Research: Atmospheres, 97(D10), 10375-10388. https://doi.org/https://doi.org/10.1029/91JD02287 Su, S.-H., Chang, C.-W., & Chen, W.-T. (2020). The Temporal Evolution of PM2.5 Pollution Events in Taiwan: Clustering and the Association with Synoptic Weather. Atmosphere, 11(11), 1265. https://doi.org/https://doi.org/10.3390/atmos11111265 Tsai, D.-H., Wang, J.-L., Chuang, K.-J., & Chan, C.-C. (2010). Traffic-related air pollution and cardiovascular mortality in central Taiwan. Science of the total environment, 408(8), 1818-1823. https://doi.org/https://doi.org/10.1016/j.scitotenv.2010.01.044 Tsai, J.-Y., & Wu, C.-M. (2016, 2016/12/01/). Critical transitions of stratocumulus dynamical systems due to perturbation in free-atmosphere moisture. Dynamics of Atmospheres and Oceans, 76, 1-13. https://doi.org/https://doi.org/10.1016/j.dynatmoce.2016.08.002 Tsai, W.-M., & Wu, C.-M. (2017). The environment of aggregated deep convection. Journal of Advances in Modeling Earth Systems, 9(5), 2061-2078. https://doi.org/https://doi.org/10.1002/2017MS000967 Tseng, C.-H., Tsuang, B.-J., Chiang, C.-J., Ku, K.-C., Tseng, J.-S., Yang, T.-Y., Hsu, K.-H., Chen, K.-C., Yu, S.-L., & Lee, W.-C. (2019). The relationship between air pollution and lung cancer in nonsmokers in Taiwan. Journal of Thoracic Oncology, 14(5), 784-792. https://doi.org/https://doi.org/10.1016/j.jtho.2018.12.033 Verwer, J. G. (1994). Gauss-Seidel Iteration for Stiff ODES from Chemical Kinetics. SIAM J. Sci. Comput., 15, 1243-1250. https://doi.org/https://doi.org/10.1137/0915076 Verwer, J. G., & Simpson, D. (1995, 1995/09/01/). Explicit methods for stiff ODEs from atmospheric chemistry. Applied Numerical Mathematics, 18(1), 413-430. https://doi.org/https://doi.org/10.1016/0168-9274(95)00068-6 Vilà-Guerau de Arellano, J., Kim, S. W., Barth, M. C., & Patton, E. G. (2005). Transport and chemical transformations influenced by shallow cumulus over land. Atmos. Chem. Phys., 5(12), 3219-3231. https://doi.org/https://doi.org/10.5194/acp-5-3219-2005 Vilà-Guerau de Arellano, J., van den Dries, K., & Pino, D. (2009). On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements. Atmos. Chem. Phys., 9(11), 3629-3640. https://doi.org/https://doi.org/10.5194/acp-9-3629-2009 Wu, C.-M., & Arakawa, A. (2011, 06/21). Inclusion of Surface Topography into the Vector Vorticity Equation Model (VVM). Journal of Advances in Modeling Earth Systems, 3. https://doi.org/https://doi.org/10.1029/2011MS000061 Wu, C.-M., & Arakawa, A. (2014, 01 Jun. 2014). A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part II. Journal of the Atmospheric Sciences, 71(6), 2089-2103. https://doi.org/https://doi.org/10.1175/jas-d-13-0382.1 Wu, C.-M., & Chen, P.-Y. (2021). Idealized cloud-resolving simulations of land-atmosphere coupling over tropical islands. Terrestrial, Atmospheric & Oceanic Sciences, 32(2). https://doi.org/https://doi.org/10.3319/TAO.2020.12.16.01 Wu, C.-M., Lin, H.-C., Cheng, F.-Y., & Chien, M.-H. (2019, 04/08). Implementation of the Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Study its Impact on Afternoon Thunderstorms over Complex Topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55. https://doi.org/https://doi.org/10.1007/s13143-019-00116-x Wu, C.-M., Lo, M.-H., Chen, W.-T., & Lu, C.-T. (2015). The impacts of heterogeneous land surface fluxes on the diurnal cycle precipitation: A framework for improving the GCM representation of land-atmosphere interactions. Journal of Geophysical Research: Atmospheres, 120(9), 3714-3727. https://doi.org/https://doi.org/10.1002/2014JD023030 Yu, T.-Y., & Chang, I.-C. (2006). Spatiotemporal Features of Severe Air Pollution in Northern Taiwan (8 pp). Environmental Science and Pollution Research, 13(4), 268-275. https://doi.org/https://doi.org/10.1065/espr2005.12.288 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85605 | - |
| dc.description.abstract | 本研究旨在利用海洋、陸地和山脈分布的理想模擬,研究局部排放的日變化所受到的物理和化學作用。在台灣冬季弱綜觀的天氣型態下,由於局部環流和複雜地形之間的相互作用,很難評估局部排放如何影響空氣品質,因此本研究使用與化學模組耦合的三維渦度向量方程雲解析模式 (VVM) 進行理想化模擬,以釐清物理和化學過程對局部排放的影響。化學方面僅使用兩個反應將複雜的化學交互作用簡化為保守的化學系統,實驗中主要針對兩種排放源,分別是廣泛分佈在城市平原地區的交通排放,以及在狹長沿海工業區的高濃度工業污染排放,排放量則根據台灣的歷史空氣汙染排放數據 (臺灣空氣污染物排放量清冊, TEDS) 。在平原地區,交通排放在清晨累積在地表附近,但在邊界層形成後,污染物濃度受到垂直混合被稀釋。另一方面,工業排放的汙染傳送主要為海風控制,在下午隨著海風前緣進入內陸地區,影響內陸地區的空氣品質。在山區,兩種排放源的汙染物皆由海風傳送主導,於傍晚從平原地區被海風傳送到山區。因此,我們可以在平原地區觀察到兩個汙染濃度峰值,而在山區只有一個濃度峰值。再者可以利用停留時間的機率分布來分析不同汙染源在時間上的表現,由此可知工業排放主要停留在五百公尺以下的平原地區,而交通排放則在邊界層頂累積並維持較長的時間。此外,白天氮氧化物之間的轉換以光解反應為主,可以觀察到臭氧的增加,而排放的一氧化氮和二氧化氮比率在影響化學平衡中也扮演重要的角色。在夜間,一氧化氮和臭氧反應生成二氧化氮,二氧化氮是二次氣溶膠的前驅物,經歷夜間反應後可能會導致山區污染。由於不利汙染散布的氣象條件和過多的氮氧化物排放,平原地區的臭氧在第二天晚上耗盡。此研究得知釐清物理過程以了解污染物濃度的局部變化的重要性,持續的汙染排放和化學作用則造成一氧化氮和二氧化氮的比率在兩天之間發生劇烈變化。 | zh_TW |
| dc.description.abstract | This study aims to investigate the diurnal evolution of local emissions based on the physical and chemical views in idealized simulations with ocean, land, and mountain distribution. During the wintertime weak synoptic condition in Taiwan, it is difficult to evaluate how local emissions influence the air quality due to interactions between the local circulation and complex topography. Idealized simulations using the Vector Vorticity equation cloud-resolving Model (VVM) coupled to a chemistry parameterization are performed to study the impacts of physical and chemical processes on local emissions. Two nitrogen reactions are applied to simplify the chemical interactions to a conservative chemical system, and the local emissions are based on historical air pollution data in Taiwan (Taiwan Emission Data System, TEDS). The traffic emissions are broadly distributed over urban plain areas, while high-concentration industrial pollutants are emitted in very limited coastal areas. Over the plain areas, traffic emissions accumulated in the early morning, but the concentration of the pollutants was diluted through vertical mixing after the boundary layer developed. On the other hand, the transport of industrial emissions is controlled by the sea breeze, and highly polluted air is transported with the sea breeze front invading inland regions in the afternoon. In the mountain areas, both emissions are transported by the sea breeze from the plain areas in the evening. Thus, we can observe two concentration peaks over the plain areas, while there is only one concentration peak over the mountain areas. Another aspect of physical effects could be analyzed using the probability distribution of the residence time, which shows that the industrial emissions mostly stay over the plain areas under 500m, while the traffic emissions accumulated at the boundary layer top and persist for an extended period. Besides, the transformation between NOx in the daytime is dominated by photodissociation; an increase in O3 can be observed in the daytime, while the emitted NO/NO2 ratio also plays an important role in affecting chemical equilibrium. During the nighttime, NO and O3 react to produce NO2, which is the precursor of secondary aerosols that would lead to a polluted condition in the mountain areas. Due to unfavorable meteorological conditions and excessive NOx emissions, O3 runs out on day 2 evening over the plain regions. The results highlight the importance of resolving the physical processes to understand the local evolution of pollutant concentration. Excessive emissions and the effect of chemical reactions lead to a drastic change in the NO/NO2 ratio between day 1 and day 2. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:19:33Z (GMT). No. of bitstreams: 1 U0001-2706202215394000.pdf: 4071350 bytes, checksum: 3aae482d97f8bf059f48676a0436746f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝辭………………………………………………………………………………………………………………………………………………………………………………………………………i 摘要……………………………………………………………………………………………………………………………………………………………………………………………………ii Abstract………………………………………………………………………………………………………………………………………………………………………………………iii Contents……………………………………………………………………………………………………………………………………………………………………………………………v Figure captions………………………………………………………………………………………………………………………………………………………………………vi Table captions…………………………………………………………………………………………………………………………………………………………………………ix 1 Introduction……………………………………………………………………………………………………………………………………………………………………………1 2 Model Description and Evaluation………………………………………………………………………………………………………………………5 2.1 VVM introduction……………………………………………………………………………………………………………………………………………………………5 2.2 Implementation of Chemistry Module……………………………………………………………………………………………………………6 2.3 Diurnal cycle of shallow convection over land………………………………………………………………………………7 2.4 Results of comparison test…………………………………………………………………………………………………………………………………8 3 Idealized Experiment……………………………………………………………………………………………………………………………………………………11 3.1 Idealization of boundary layer process in Taiwan……………………………………………………………………12 3.2 Idealization of sea breeze circulation in Taiwan……………………………………………………………………13 3.3 Experiment setup…………………………………………………………………………………………………………………………………………………………14 4 Results………………………………………………………………………………………………………………………………………………………………………………………16 4.1 Physical effects of total emissions………………………………………………………………………………………………………16 4.2 Differences between physical effects of industrial and vehicle emission………19 4.3 Chemical effects of total emissions………………………………………………………………………………………………………21 5 Summary and Discussion………………………………………………………………………………………………………………………………………………24 Reference………………………………………………………………………………………………………………………………………………………………………………………27 Tables………………………………………………………………………………………………………………………………………………………………………………………………33 Figures……………………………………………………………………………………………………………………………………………………………………………………………35 | |
| dc.language.iso | en | |
| dc.subject | 邊界層過程 | zh_TW |
| dc.subject | 大渦流模擬 | zh_TW |
| dc.subject | 海風環流 | zh_TW |
| dc.subject | 汙染傳送 | zh_TW |
| dc.subject | 氮氧化物反應 | zh_TW |
| dc.subject | 汙染傳送 | zh_TW |
| dc.subject | 大渦流模擬 | zh_TW |
| dc.subject | 邊界層過程 | zh_TW |
| dc.subject | 海風環流 | zh_TW |
| dc.subject | 氮氧化物反應 | zh_TW |
| dc.subject | sea breeze circulation | en |
| dc.subject | NOx reactions | en |
| dc.subject | boundary layer process | en |
| dc.subject | sea breeze circulation | en |
| dc.subject | large eddy simulation | en |
| dc.subject | pollution transport | en |
| dc.subject | large eddy simulation | en |
| dc.subject | boundary layer process | en |
| dc.subject | NOx reactions | en |
| dc.subject | pollution transport | en |
| dc.title | 物理和化學作用對NOx日變化影響之理想模擬研究 | zh_TW |
| dc.title | Physical and Chemical Effects of Diurnal Evolution of NOx Concentration in Idealized Simulations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳維婷(Wei-Ting Chen),洪惠敏(Hui-Ming Hung),陳世楠(Shih-Nan Chen) | |
| dc.subject.keyword | 汙染傳送,大渦流模擬,海風環流,邊界層過程,氮氧化物反應, | zh_TW |
| dc.subject.keyword | pollution transport,large eddy simulation,sea breeze circulation,boundary layer process,NOx reactions, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202201146 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-08 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2706202215394000.pdf | 3.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
