Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85590
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛馬坦(Matan Shelomi)
dc.contributor.authorJun-Wei Fanen
dc.contributor.author范浚維zh_TW
dc.date.accessioned2023-03-19T23:19:13Z-
dc.date.copyright2022-07-06
dc.date.issued2022
dc.date.submitted2022-07-04
dc.identifier.citationAli SS, Wu J, Xie R, Zhou F, Sun J & Huang M (2017) Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS ONE 12: e0181141. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403-410. Ayayee P, Rosa C, Ferry JG, Felton G, Saunders M & Hoover K (2014) Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environmental Entomology 43: 903-912. Baldrian P & Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews 32: 501-521. Benemann JR (1973) Nitrogen fixation in termites. Science 181: 164-165. Bharadwaj P & Martins R (2020) A rapid absorbance-based growth assay to screen the toxicity of oligomer Aβ42 and protect against cell death in yeast. Neural Regeneration Research 15: 1931. Blanchette RA (1991) Delignification by wood-decay fungi. Annual Review of Phytopathology 29: 381-403. Bourtzis K & Miller TA (2003) Insect symbiosis. CRC press. Burlacu A, Cornea CP & Israel-Roming F (2016) Microbial xylanase: a review. Scientific Bulletin. Series F. Biotechnologies 20: 335-342. Cadete RM & Rosa CA (2018) The yeasts of the genus Spathaspora: potential candidates for second‐generation biofuel production. Yeast 35: 191-199. Carneiro CVG, Silva FCdPe & Almeida JR (2019) Xylitol production: identification and comparison of new producing yeasts. Microorganisms 7: 484. Castillo M & Reyes-Castillo P (2009) Passalidae, insects which live in decaying logs. Tropical Biology and Conservation Management 7: 112-133. Chang Y-Z (2006) Stag beetles 54, 1st edn. Yuan-Liou, Taipei. (in Traditional Chinese) Cheng K-K, Zhang J-A, Ling H-Z, Ping W-X, Huang W, Ge J-P & Xu J-M (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochemical Engineering Journal 43: 203-207. Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F & Frandsen KE (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nature Chemical Biology 14: 306-310. Crespin SJ & Barahona‐Segovia RM (2021) The risk of rediscovery: fast population decline of the localized endemic Chilean stag beetle Sclerostomulus nitidus (Coleoptera: Lucanidae) suggests trade as a threat. Insect Conservation and Diversity 14: 107-116. Douglas A (1989) Mycetocyte symbiosis in insects. Biological Reviews 64: 409-434. Douglas A (2009) Endosymbionts and intracellular parasites. In: Schaechter M (eds). Desk Encyclopedia of Microbiology. Elsevier, Amsterdam Douglas AE (2011) Lessons from studying insect symbioses. Cell Host & Microbe 10: 359-367. Elmas S, Pospisilova A, Sekulska AA, Vasilev V, Nann T, Thornton S & Priest C (2020) Photometric sensing of active chlorine, total chlorine, and pH on a microfluidic chip for online swimming pool monitoring. Sensors 20: 3099. Endoh R, Suzuki M, Okada G, Takeuchi Y & Futai K (2011) Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus. Microbial Ecology 62: 106-120. Farias D, de Andrade RR & Maugeri-Filho F (2014) Kinetic modeling of ethanol production by Scheffersomyces stipitis from xylose. Applied Biochemistry and Biotechnology 172: 361-379. Fremlin M & Tanahashi M (2015) Sexually-dimorphic post-eclosion behaviour in the European stag beetle Lucanus cervus (L.)(Coleoptera: Lucanidae). Bull. Soc. Entomol. Suisse 8: 29-38. Fukatsu T & Hosokawa T (2002) Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Applied and Environmental Microbiology 68: 389-396. Goka K, Kojima H & Okabe K (2004) Biological invasion caused by commercialization of stag beetles in Japan. GLOBAL ENVIRONMENTAL RESEARCH-ENGLISH EDITION- 8: 67-74. Goodell B, Qian Y & Jellison J (2008) Fungal decay of wood: soft rot—brown rot—white rot: ACS Publications. Groenewald M, Robert V & Smith MT (2011) The value of the D1/D2 and internal transcribed spacers (ITS) domains for the identification of yeast species belonging to the genus Yamadazyma. Persoonia-Molecular Phylogeny and Evolution of Fungi 26: 40-46. Hasegawa E & Kudo T (2020) Aggressiveness of Males and Females of the Stag Beetle, Prosopocoilus inclinatus (Coleoptera: Lucanidae), are Mediated by Different Biogenic-amines. Entomol Ornithol Herpetol 9: 2161-0983.2120. Hillis WE (2012) Heartwood and tree exudates. Springer Science & Business Media. Huang S-J (2019) Stag beetles diary, new edn. HONG-SHU-LIN, Taipei. (in Traditional Chinese) Huang T-I (2018) Diversity and ecology of stag beetles (Lucanidae): Saproxylic Insects (ed. Springer, pp. 149-165. Husnik F (2018) Host–symbiont–pathogen interactions in blood-feeding parasites: nutrition, immune cross-talk and gene exchange. Parasitology 145: 1294-1303. Jackson S & Nicolson SW (2002) Xylose as a nectar sugar: from biochemistry to ecology. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 131: 613-620. Jeffries TW (1985) Emerging technology for fermenting D-xylose. Trends in Biotechnology 3: 208-212. Jeffries TW & Shi N-Q (1999) Genetic engineering for improved xylose fermentation by yeasts. Recent progress in bioconversion of lignocellulosics: 117-161. Joseph R & Keyhani NO (2021) Fungal mutualisms and pathosystems: Life and death in the ambrosia beetle mycangia. Applied Microbiology and Biotechnology 105: 3393-3410. Kim SA, KIM KM & OH BJ (2008) Current status and perspective of the insect industry in Korea. Entomological Research 38: S79-S85. Kim SI & Farrell BD (2015) Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin’s stag beetle. Molecular Phylogenetics and Evolution 86: 35-48. Ko GH & Kim D-S (2021) A Study on the Ovipositional Characteristics of Endangered Species Prosopocoilus astacoides blanchardi (Coleoptera: Lucanidae) for Indoor Mass-rearing. Korean Journal of Applied Entomology 60: 423-429. Kuranouchi T, Nakamura T, Shimamura S, Kojima H, Goka K, Okabe K & Mochizuki A (2006) Nitrogen fixation in the stag beetle, Dorcus (Macrodorcus) rectus (Motschulsky)(Col., Lucanidae). Journal of Applied Entomology 130: 471-472. Kurtzman CP & Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73: 331-371. Leung TKC & Bonebrake TC (2021) Abundance, distribution and substrate association of Hong Kong stag beetles (Coleoptera: Lucanidae) in secondary forests. Insect Conservation and Diversity 14: 609-619. Mason CJ, Scully ED, Geib SM & Hoover K (2016) Contrasting diets reveal metabolic plasticity in the tree-killing beetle, Anoplophora glabripennis (Cerambycidae: Lamiinae). Scientific Reports 6: 1-13. McKeown NJ, Harvey DJ, Healey AJ, Skujina I, Cox K, Gange AC & Shaw PW (2018) Isolation and characterisation of the first microsatellite markers for the European stag beetle, Lucanus cervus (Coleoptera: Lucanidae). EJE 115: 620-623. McMinn JW & Crossley D (1996) Biodiversity and coarse woody debris in southern forests. DIANE Publishing. Meggs JM & Munks SA (2003) Distribution, habitat characteristics and conservation requirements of a forest-dependent threatened invertebrate Lissotes latidens (Coleoptera: Lucanidae). Journal of Insect Conservation 7: 137-152. Nguyen NH, Suh S-O, Marshall CJ & Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycological Research 110: 1232-1241. Op De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J & Colpaert JV (2014) Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE 9: e97629. Patrignani F, Parrotta L, Del Duca S, Vannini L, Camprini L, Dalla Rosa M, Schlüter O & Lanciotti R (2020) Potential of Yarrowia lipolytica and Debaryomyces hansenii strains to produce high quality food ingredients based on cricket powder. Lwt 119: 108866. Pettersen RC (1984) The chemical composition of wood. The chemistry of solid wood 207: 57-126. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E & Otillar R (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences 111: 9923-9928. Roets F & Oberlander KC (2020) Symbiotic yeasts from the mycangium, larval gut and woody substrate of an African stag beetle Xiphodontus antilope (Coleoptera: lucanidae). Antonie Van Leeuwenhoek 113: 1123-1134. Scully ED, Hoover K, Carlson JE, Tien M & Geib SM (2013) Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. BMC Genomics 14: 1-26. Selim KA, Easa SM & El-Diwany AI (2020) The xylose metabolizing yeast Spathaspora passalidarum is a promising genetic treasure for improving bioethanol production. Fermentation 6: 33. Shelomi M (2019) Bacterial and eukaryote microbiomes of mosquito habitats in dengue-endemic southern Taiwan. Journal of Asia-Pacific Entomology 22: 471-480. Sjostrom E (1993) Wood chemistry: fundamentals and applications. Gulf Professional Publishing. Sánchez A, Micó E, Galante E & Juárez M (2017) Chemical transformation of Quercus wood by Cetonia larvae (Coleoptera: Cetoniidae): an improvement of carbon and nitrogen available in saproxylic environments. European Journal of Soil Biology 78: 57-65. Suh S-O, Houseknecht JL, Gujjari P & Zhou JJ (2013) Scheffersomyces parashehatae fa, sp. nov., Scheffersomyces xylosifermentans fa, sp. nov., Candida broadrunensis sp. nov. and Candida manassasensis sp. nov., novel yeasts associated with wood-ingesting insects, and their ecological and biofuel implications. International Journal of Systematic and Evolutionary Microbiology 63: 4330-4339. Swift M (1977) The ecology of wood decomposition. Science Progress (1933-): 175-199. Tanahashi M & Fremlin M (2013) The mystery of the lesser stag beetle Dorcus parallelipipedus (L.)(Coleoptera: Lucanidae) mycangium yeasts. Bull. Amateur Entomol. Soc 72: 146-152. Tanahashi M & Hawes CJ (2016) The presence of a mycangium in European Sinodendron cylindricum (Coleoptera: Lucanidae) and the associated yeast symbionts. Journal of Insect Science 16: 76. Tanahashi M, Ikeda H & Kubota K (2018) Elementary budget of stag beetle larvae associated with selective utilization of nitrogen in decaying wood. The Science of Nature 105: 1-14. Tanahashi M, Kim J-K, Watanabe K, Fukatsu T & Kubota K (2017) Specificity and genetic diversity of xylose-fermenting Scheffersomyces yeasts associated with small blue stag beetles of the genus Platycerus in East Asia. Mycologia 109: 630-642. Tanahashi M, Kubota K, Matsushita N & Togashi K (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97: 311-317. Ulyshen MD (2015) Insect‐mediated nitrogen dynamics in decomposing wood. Ecological Entomology 40: 97-112. Ulyshen MD (2018) Ecology and conservation of Passalidae: Saproxylic Insects (ed. Springer, pp. 129-147. Valentim LTCN, Nogueira SRP & Abegg MA (2017) Efficient production of second generation ethanol and xylitol by yeasts from Amazonian beetles (Coleoptera) and their galleries. African Journal of Microbiology Research 11: 814-824. Wang Y, Ren Y-C, Zhang Z-T, Ke T & Hui F-L (2016) Spathaspora allomyrinae sp. nov., a D-xylose-fermenting yeast species isolated from a scarabeid beetle Allomyrina dichotoma. International Journal of Systematic and Evolutionary Microbiology 66: 2008-2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85590-
dc.description.abstract鍬形蟲科(Lucanidae)是舉世聞名的昆蟲,但關於其生態知識所知甚少。雌成蟲具有儲菌器(mycangia),其中儲藏之木糖發酵酵母菌有助於幼蟲消化朽木物質。Scheffersomyces被認為是鍬形蟲主要的共生酵母菌,且傳遞於世代間。雌蟲於產卵時將酵母菌塗抹在卵上或周邊介質,並在幼蟲腸道及隧道中移生。化蛹期間,酵母菌被保存在蛹室壁內,新羽化的雌蟲藉由後羽化行為重新獲得菌種。由於鍬形蟲在木材分解與生態保育具有重要性,迫切需要相關研究。本研究調查台灣之二點赤鋸鍬形蟲(Prosopocoilus astacoides blanchardi),雌成蟲於野外採集並在實驗室內繁殖。酵母菌從儲菌器、卵巢、幼蟲腸道、隧道及蛹室壁中分離培養,並經過物種鑑定、菌落形成單位計算、木糖利用能力測試。從雌成蟲及蛹室壁內及獲得的酵母菌差異相當大,包含Scheffersomyces spp.、Candida spp.及Meyerozyma guilliermondii等。本研究可能為首次在鍬形蟲卵巢中發現酵母菌存在之記錄。幼蟲腸道及隧道之分析結果則相似且均一,以Scheffersomyces spp.及Spathaspora spp.為主。依據親緣關係之結果,從本種鍬形蟲取得之Scheffersomyces屬酵母可能為新種。從所有樣本取得的大多數酵母菌皆可利用木糖。結果顯示二點赤鋸鍬形蟲之共生酵母菌不具物種專一性,垂直傳遞之菌種對幼蟲生存可能並非必須,但所有的共生酵母菌對幼蟲消化具有一定程度之幫助。zh_TW
dc.description.abstractStag beetles (Lucanidae) are world-famous insects, but knowledge about their ecology is limited. Females have mycangia, which harbor xylose-fermenting yeasts that help larvae digest their woody diet. Scheffersomyces yeasts are considered the main symbionts of lucanids, and are transmitted across generations. Yeasts are spread by females on substrates near the eggs and colonize the larval gut and tunnels. During pupation, the yeasts are stored in the cocoon walls, and acquired again by newly eclosed female adults through post-eclosion behaviors. Due to the importance of lucanids in wood decomposition and conservation, related studies are urgently needed. This research investigates Prosopocoilus astacoides blanchardi in Taiwan. Female adults were collected from the wild and reproduced in the laboratory. Yeasts were cultured from the mycangium, ovary, larval gut, tunnels, and cocoon walls. Species identification, CFU calculation, and xylose-utilizing ability tests were done. Yeasts isolated from females and cocoon walls varied greatly. Scheffersomyces spp., Candida spp., and Meyerozyma guilliermondii were found. This study might be the first record of yeast presence in lucanid ovaries. Results of larval gut and tunnels were uniform and similar: Scheffersomyces spp. and Spathaspora spp. were dominant. According to the phylogenic results, the dominant Scheffersomyces species found in this lucanid might be a new species. Most of the collected fungi could utilize xylose. The results suggest that the associations with yeast symbionts in Prosopocoilus astacoides blanchardi are not species-specific. The vertically transmitted yeasts may not be necessary for larval survival, but all yeast symbionts contribute to larval digestion to some degree.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:19:13Z (GMT). No. of bitstreams: 1
U0001-0207202214094300.pdf: 2525732 bytes, checksum: ee85fd9d20a97b961aff38278d56a3ea (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgement ii Chinese Abstract iii English Abstract iv Table of Contents vi Introduction 1 I. Symbionts of Insects 1 II. Wood, insects, and fungi 2 III. Stag Beetles 6 IV. Importance of Lucanidae 8 Materials & Methods 10 I. Insect collection 10 II. Insect rearing 10 III. Dissection, yeast isolation, and quantification 12 IV. DNA sequencing analysis and phylogeny 14 V. Xylose-utilizing Ability Test 16 Results 18 I. Insect dissection 18 II. Yeast Identification 18 III. Phylogeny of Scheffersomyces Species 20 IV. Xylose-utilizing Ability Test 21 Discussion 22 Appendix 28 I. Figures 27 II. Tables 32 References 40
dc.language.isoen
dc.subject鍬形蟲zh_TW
dc.subject木糖發酵zh_TW
dc.subject木材分解zh_TW
dc.subject共生酵母菌zh_TW
dc.subject儲菌器zh_TW
dc.subjectxylose fermentationen
dc.subjectyeast symbionten
dc.subjectstag beetlesen
dc.subjectmycangiumen
dc.subjectwood decompositionen
dc.title二點赤鋸鍬形蟲(鍬形蟲科)之共生酵母菌zh_TW
dc.titleSymbiotic Yeasts of Prosopocoilus astacoides blanchardi (Lucanidae)en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李春霖(Chun-Lin Li),林仲平(Chung-Ping Lin),鄭光成(Kuan-Chen Cheng)
dc.subject.keyword鍬形蟲,共生酵母菌,儲菌器,木糖發酵,木材分解,zh_TW
dc.subject.keywordstag beetles,yeast symbiont,mycangium,xylose fermentation,wood decomposition,en
dc.relation.page44
dc.identifier.doi10.6342/NTU202201248
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
dc.date.embargo-lift2022-07-06-
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
U0001-0207202214094300.pdf2.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved