Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周佳靚(Chia-Ching Chou)
dc.contributor.authorTzu-Lun Huangen
dc.contributor.author黃子綸zh_TW
dc.date.accessioned2023-03-19T23:18:44Z-
dc.date.copyright2022-07-12
dc.date.issued2022
dc.date.submitted2022-07-04
dc.identifier.citation1. Ishikawa , H., R. Bischoff , and H. Holtzer MITOSIS AND INTERMEDIATE-SIZED FILAMENTS IN DEVELOPING SKELETAL MUSCLE. Journal of Cell Biology, 1968. 38(3): p. 538-555. 2. Herrmann, H., et al., Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology, 2007. 8(7): p. 562-573. 3. Steinert, P.M., The two-chain coiled-coil molecule of native epidermal keratin intermediate filaments is a type I-type II heterodimer. Journal of Biological Chemistry, 1990. 265(15): p. 8766-8774. 4. Sawant, M., et al., Threonine 150 Phosphorylation of Keratin 5 Is Linked to EBS and Regulates Filament Assembly and Cell Viability. The Journal of investigative dermatology, 2017. 138. 5. Steinert, P.M. and D.A.D. Parry, Intermediate Filaments: Conformity and Diversity of Expression and Structure. Annual Review of Cell Biology, 1985. 1(1): p. 41-65. 6. Steinert, P.M., et al., Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int J Biol Macromol, 1991. 13(3): p. 130-9. 7. Fraser, R. and D.A. Parry, The three-dimensional structure of trichocyte (hard α-) keratin intermediate filaments: Features of the molecular packing deduced from the sites of induced crosslinks. Journal of structural biology, 2005. 151(2): p. 171-181. 8. Parry, D.A.D. and P.M. Steinert, Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Quarterly Reviews of Biophysics, 1999. 32(2): p. 99-187. 9. Herrmann, H. and U. Aebi, Intermediate Filaments: Structure and Assembly. Cold Spring Harb Perspect Biol, 2016. 8(11). 10. Steinert, P.M., et al., Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J Mol Biol, 1993. 230(2): p. 436-52. 11. Park, A.C. and C.B. Baddiel. Rheology of stratum corneum--I: A molecular interpretation of the stress-strain curve. 1972. 12. Kreplak, L., et al., Exploring the Mechanical Behavior of Single Intermediate Filaments. Journal of Molecular Biology, 2005. 354(3): p. 569-577. 13. Feng, X. and P.A. Coulombe, A role for disulfide bonding in keratin intermediate filament organization and dynamics in skin keratinocytes. Journal of Cell Biology, 2015. 209(1): p. 59-72. 14. Bunick, C.G. and L.M. Milstone, The X-Ray Crystal Structure of the Keratin 1-Keratin 10 Helix 2B Heterodimer Reveals Molecular Surface Properties and Biochemical Insights into Human Skin Disease. Journal of Investigative Dermatology, 2017. 137: p. Medium: X; Size: p. 142-150. 15. Eldirany, S.A., et al., Human keratin 1/10-1B tetramer structures reveal a knob-pocket mechanism in intermediate filament assembly. The EMBO Journal, 2019. 38(11): p. e100741. 16. Terron-Kwiatkowski, A., et al., Mutation S233L in the 1B Domain of Keratin 1 Causes Epidermolytic Palmoplantar Keratoderma with “Tonotubular” Keratin. Journal of Investigative Dermatology, 2006. 126(3): p. 607-613. 17. Fine, J.-D., Epidermolysis bullosa : clinical, epidemiologic, and laboratory advances, and the findings of the National Epidermolysis Bullosa Registry / edited by Jo-David Fine ... [and others]. 1999, Baltimore, Md: Johns Hopkins University Press. 18. Yasukawa, K., et al., Dominant and recessive compound heterozygous mutations in epidermolysis bullosa simplex demonstrate the role of the stutter region in keratin intermediate filament assembly. J Biol Chem, 2002. 277(26): p. 23670-4. 19. Coulombe, P.A. and C.-H. Lee, Defining Keratin Protein Function in Skin Epithelia: Epidermolysis Bullosa Simplex and Its Aftermath. Journal of Investigative Dermatology, 2012. 132(3, Part 2): p. 763-775. 20. Covello, S.P., et al., Mutations in keratin K9 in kindreds with epidermolytic palmoplantar keratoderma and epidemiology in Northern Ireland. J Invest Dermatol, 1998. 111(6): p. 1207-9. 21. Sakiyama, T. and A. Kubo, Hereditary palmoplantar keratoderma@ clinical and genetic differential diagnosis The Journal of Dermatology, 2016. 43. 22. Smith, F.J.D., et al., Novel and recurrent mutations in keratin 1 cause epidermolytic ichthyosis and palmoplantar keratoderma. Clin Exp Dermatol, 2019. 44(5): p. 528-534. 23. Pace, C.N. and J.M. Scholtz, A helix propensity scale based on experimental studies of peptides and proteins. Biophys J, 1998. 75(1): p. 422-7. 24. Mónico, A., et al., Elucidating vimentin interaction with zinc ions and its interplay with oxidative modifications through crosslinking assays and molecular dynamics simulations. bioRxiv, 2021: p. 2021.02.12.430929. 25. Yeo, J., et al., Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations. Extreme Mechanics Letters, 2018. 20: p. 112-124. 26. Danciulescu, C., B. Nick, and F.-J. Wortmann, Structural Stability of Wild Type and Mutated α-Keratin Fragments:  Molecular Dynamics and Free Energy Calculations. Biomacromolecules, 2004. 5(6): p. 2165-2175. 27. Qin, Z., L. Kreplak, and M.J. Buehler, Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments. PLOS ONE, 2009. 4(10): p. e7294. 28. Antunes, E., et al., Insights on the mechanical behavior of keratin fibrils. International Journal of Biological Macromolecules, 2016. 89: p. 477-483. 29. Antunes, E., et al., The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data. RSC Advances, 2015. 5(16): p. 12365-12371. 30. Kim, Y., et al., Mechanically inferior constituents in spider silk result in mechanically superior fibres by adaptation to harsh hydration conditions: a molecular dynamics study. J R Soc Interface, 2018. 15(144). 31. Kim, Y., et al., Mechanical features of various silkworm crystalline considering hydration effect via molecular dynamics simulations. J Biomol Struct Dyn, 2018. 36(5): p. 1360-1368. 32. Chou, C.-C. and M.J. Buehler, Structure and Mechanical Properties of Human Trichocyte Keratin Intermediate Filament Protein. Biomacromolecules, 2012. 13(11): p. 3522-3532. 33. Pan, C.-Y. and C.-C. Chou, Molecular origin of the effects of mutation on the structure and mechanical properties of human epithelial keratin K5/K14. Journal of the Mechanical Behavior of Biomedical Materials, 2021. 124: p. 104798. 34. Arsenault, R.J., J.R. Beeler, and D.M. Esterling. Computer simulation in materials science. 1988. United States: Metals Park, OH; American Society for Metals. 35. Foloppe, N. and J. MacKerell, Alexander D., All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 2000. 21(2): p. 86-104. 36. Goldstein, A.A., On steepest descent. Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1965. 3(1): p. 147-151. 37. Hayden, M.G., The Ensemble system. 1998, Cornell University: Ann Arbor. p. 147. 38. Berendsen, H.J.C., et al., Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 1984. 81(8): p. 3684-3690. 39. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984. 81(1): p. 511-519. 40. Bussi, G., D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 2007. 126(1): p. 014101. 41. Verlet, L., Computer 'Experiments' on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 1967. 159(1): p. 98-103. 42. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56(9): p. 930. 43. Izrailev, S., et al. Steered Molecular Dynamics. in Computational Molecular Dynamics: Challenges, Methods, Ideas. 1999. Berlin, Heidelberg: Springer Berlin Heidelberg. 44. Dąbrowski, J., W. Nowak, and A. Ptak, How strong are hydrogen bonds in the peptide model? Physical Chemistry Chemical Physics, 2020. 22(3): p. 1392-1399. 45. Ozer, G., S. Quirk, and R. Hernandez, Adaptive steered molecular dynamics: Validation of the selection criterion and benchmarking energetics in vacuum. The Journal of Chemical Physics, 2012. 136(21): p. 215104. 46. Abraham, M.J., et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015. 1-2: p. 19-25. 47. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Research, 2000. 28(1): p. 235-242. 48. Sievers, F., et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011. 7(1): p. 539. 49. Kumar, R., J.R. Schmidt, and J.L. Skinner, Hydrogen bonding definitions and dynamics in liquid water. The Journal of Chemical Physics, 2007. 126(20): p. 204107. 50. Dannenberg, J.J., An Introduction to Hydrogen Bonding By George A. Jeffrey (University of Pittsburgh). Oxford University Press:  New York and Oxford. 1997. ix + 303 pp. $60.00. ISBN 0-19-509549-9. Journal of the American Chemical Society, 1998. 120(22): p. 5604-5604. 51. Steiner, T., The Hydrogen Bond in the Solid State. Angewandte Chemie International Edition, 2002. 41(1): p. 48-76. 52. Hinbest, A.J., et al., Molecular Modeling of Pathogenic Mutations in the Keratin 1B Domain. Int J Mol Sci, 2020. 21(18).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85567-
dc.description.abstract人類的上皮角蛋白是一種中間絲,做為維持細胞及整個細胞機械穩定性的骨架。微觀的角蛋白結構的穩定性和機械性質能在宏觀上影響著皮膚的性能。本研究重點關注與罕見皮膚遺傳疾病單純型遺傳性表皮分解水皰症相關的角蛋白K 5/14在1B結構域上的突變點L311R,以及掌蹠角化症相關的角蛋白K 1/10在1B結構域上的兩個突變點F231L和S233L。突變的胺基酸位於疏水口袋-錨固旋鈕區域上或區域周圍,這是一個影響1B結構域中角蛋白或非角蛋白在分層組裝的重要區域。我們使用分子動力學模擬來研究突變對不同層次結構的影響,包含了分子尺度上K 5/14及K 1/10在1B結構域上的異二聚體、四聚體及八聚體。首先,結果顯示野生型和突變型在二聚體層級上整體結構高度相似,僅在局部構型上有些微改變,但在更高組裝層級上表現出不同的微觀結構和力學性質。對於L311R,突變導致了鬆散的二聚體間排列,使突變點有機會自由的擺動,這使四聚體層級機械性質上升,並使八聚體層級機械性質減弱。對於F231L的四聚體和八聚體,末端疏水相互作用和氫鍵的減少導致了機械性質的減弱,結果顯示旋鈕-口袋區域的相互作用被破壞。對於S233L,氫鍵的不均勻分布導致了四聚體機械性質的下降,然而在八聚體點突變間新增了表面暴露的疏水性區塊從而提升了力學表現。此研究使我們對點突變的差異如何導致分子尺度上的構型和機械性質發生變化有了更深入的了解。這些性質的差異可能會影響微觀尺度的角蛋白組裝,並最終導致宏觀尺度的疾病發生。zh_TW
dc.description.abstractThe epithelial keratin of humans is a type of intermediate filament that serves as a backbone to maintain the stability of the cell nucleus as well as for the mechanical stability of whole cells. The stability and mechanical properties of the microscopic keratin structure affect the performance of skin at the macroscopic scale. This study focused on point mutation, L311R, on the keratin 5/14 1B domain related to the rare skin genetic disease Epidermolysis Bullosa Simplex (EBS), and two single-point mutants, F231L and S233L, on the keratin 1/10 1B domain related to the rare skin genetic disease palmoplantar keratoderma (PPK). We used molecular dynamics simulation to study the mutation effect on the different hierarchical structures, including heterodimers, tetramers, and octamers of the K 5/14, and K1/10 1B domain at the atomistic scale. First, the results show that the wild type and mutants are highly similar at the dimer level but exhibit different microstructure and mechanics at the higher-level assembly. For L311R, the mutation resulted in a loose inter-dimer arrangement, giving the mutation point a chance to wiggle freely, which increased the mechanical properties of the tetramer level and weakened the octamer level. For F231L tetramer and octamer, decreased hydrophobic interaction and hydrogen bonds at the terminus results in weakened mechanical properties. The asymmetrical S233L tetramer structure with the uneven distribution of hydrogen bonds decreases its mechanical properties. However, S233L provides extra hydrophobic interactions between the point mutation in octamer, leading to improved mechanical properties. The analysis has given us a deeper understanding of how the differences in point mutations lead to changes in the configuration and mechanical properties at the molecular scale. The difference in these properties might affect the keratin assembly at the microscopic scale and ultimately cause the diseases at the macroscopic scale.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:18:44Z (GMT). No. of bitstreams: 1
U0001-3006202213051300.pdf: 9419407 bytes, checksum: 82766f7040c3d583ae3705ac098503e0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix 第1章. 緒論 1 1.1、 研究背景與動機 1 1.2、 文獻回顧 3 1.2.1 角蛋白中間絲 3 1.2.2 旋鈕-口袋區域 7 1.2.3 罕見皮膚疾病 9 1.2.4 二級結構 10 1.2.5 分子動力學模擬 12 1.3、 論文架構 13 第2章. 研究理論與角蛋白模型 14 2.1、 分子動力學模擬方法 14 2.1.1 勢能函數 14 2.1.2 能量最小化 16 2.1.3 系綜 17 2.1.4 系統溫度控制 17 2.1.5 韋爾萊積分法 19 2.1.6 粒子網格埃爾瓦德方法 20 2.1.7 週期性邊界、截斷半徑及韋爾萊表列法 21 2.1.8 分子動力學模擬流程 23 2.2、 拉伸分子動力學方法 25 2.3、 本研究模擬參數設定 27 2.4、 角蛋白模型 27 2.5、 測量與分析方法 28 2.5.1 氫鍵判定 28 2.5.2 D-spacing及T-spacing值測量 29 2.5.3 Root Mean Square Deviation(RMSD)之計算 30 第3章. 角蛋白1B結構域二聚體模擬結果 31 3.1、 K 5/14二聚體模擬結果 31 3.2、 K 1/10二聚體模擬結果 33 第4章. 角蛋白1B結構域四聚體模擬結果 35 4.1、 角蛋白四聚體層級構型模擬結果 35 4.1.1 K 5/14角蛋白構型模擬結果 35 4.1.2 K 1/10角蛋白構型模擬結果 42 4.2、 四聚體層級力學性質分析 51 4.2.1 K 5/14角蛋白力學性質分析 51 4.2.2 K 1/10角蛋白力學性質分析 56 第5章. 角蛋白1B結構域八聚體模擬結果 63 5.1、 角蛋白八聚體層級構型模擬結果 64 5.1.1 K 5/14角蛋白構型模擬結果 64 5.1.2 K 1/10角蛋白構型模擬結果 72 5.2、 八聚體層級力學性質分析 79 5.2.1 K 5/14力學性質探討 80 5.2.2 K 1/10力學性質探討 84 第6章. 結論與未來展望 90 6.1、 結論 90 6.2、 未來展望 92 參考文獻 93 附錄:GROMACS 模擬流程與指令 98
dc.language.isozh-TW
dc.subject中間絲zh_TW
dc.subject上皮角蛋白zh_TW
dc.subject分子動力學zh_TW
dc.subject蛋白質點突變zh_TW
dc.subject角蛋白1/10和角蛋白5/14zh_TW
dc.subjectIntermediate filamenten
dc.subjectMolecular dynamics simulationen
dc.subjectMutation effecten
dc.subjectEpithelial keratinen
dc.subjectKeratin 1/10 and Keratin 5/14en
dc.title以分子動力模擬探討點突變對上皮角蛋白1B結構域疏水作用、分子結構和機械性質之影響zh_TW
dc.titleMolecular Dynamics Simulation Study on the Hydrophobic Interaction, Molecular Structure and Mechanical Properties of Wild-type Human Epithelial Keratin in 1B Domain and its Mutantsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林頌然(Sung-Jan Lin),徐駿森(Chun-Hua Hsu)
dc.subject.keyword分子動力學,蛋白質點突變,上皮角蛋白,角蛋白1/10和角蛋白5/14,中間絲,zh_TW
dc.subject.keywordMolecular dynamics simulation,Mutation effect,Epithelial keratin,Keratin 1/10 and Keratin 5/14,Intermediate filament,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202201226
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2022-07-12-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-3006202213051300.pdf9.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved