請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85558完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬鴻文(Hwong-Wen Ma) | |
| dc.contributor.author | Han-Lin Kuo | en |
| dc.contributor.author | 郭翰霖 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:18:33Z | - |
| dc.date.copyright | 2022-07-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-06 | |
| dc.identifier.citation | Alberto López Ruiz, L., Roca Ramon, X., Melissa Lara Mercedes, C., & Gasso Domingo, S. (2022). Multicriteria analysis of the environmental and economic performance of circularity strategies for concrete waste recycling in Spain. Waste Management, 144, 387-400. Retrieved from: https://doi.org/https://doi.org/10.1016/j.wasman.2022.04.008 Bai, X. (2007). Industrial Ecology and the Global Impacts of Cities. Journal of Industrial Ecology, 11(2), 1-6. Retrieved from:https://doi.org/https://doi.org/10.1162/jie.2007.1296 Bao, Z., & Lu, W. (2020). Developing efficient circularity for construction and demolition waste management in fast emerging economies: Lessons learned from Shenzhen, China. Science of The Total Environment, 724, 138264. Retrieved from: https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138264 Bauwens, T. (2021). Are the circular economy and economic growth compatible? A case for post-growth circularity. Resources, Conservation and Recycling, 175, 105852. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105852 Bauwens, T., Hekkert, M., & Kirchherr, J. (2020). Circular futures: What Will They Look Like? Ecological Economics, 175, 106703. Retrieved from:https://doi.org/https://doi.org/10.1016/j.ecolecon.2020.106703 Bergman, L. (2005). Chapter 24 CGE Modeling of Environmental Policy and Resource Management. In K.-G. Mäler & J. R. Vincent (Eds.), Handbook of Environmental Economics (Vol. 3, pp. 1273-1306). Elsevier. Retrieved from: https://doi.org/https://doi.org/10.1016/S1574-0099(05)03024-X Bowen, A., & Hepburn, C. (2014). Green growth: an assessment. Oxford Review of Economic Policy, 30(3), 407-422. Retrieved from:https://doi.org/10.1093/oxrep/gru029 Brambilla, G., Lavagna, M., Vasdravellis, G., & Castiglioni, C. A. (2019). Environmental benefits arising from demountable steel-concrete composite floor systems in buildings. Resources, Conservation and Recycling, 141, 133-142. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2018.10.014 Broadbent, C. (2016). Steel’s recyclability: demonstrating the benefits of recycling steel to achieve a circular economy. The International Journal of Life Cycle Assessment, 21(11), 1658-1665. Retrieved from: https://doi.org/10.1007/s11367-016-1081-1 Chan, E. Y. Y., Goggins, W. B., Kim, J. J., & Griffiths, S. M. (2012). A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. Journal of Epidemiology and Community Health, 66(4), 322. Retrieved from: https://doi.org/10.1136/jech.2008.085167 Cheng, K.-L., Hsu, S.-C., Li, W.-M., & Ma, H.-W. (2018). Quantifying potential anthropogenic resources of buildings through hot spot analysis. Resources, Conservation and Recycling, 133, 10-20. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2018.02.003 Christis, M., Athanassiadis, A., & Vercalsteren, A. (2019). Implementation at a city level of circular economy strategies and climate change mitigation – the case of Brussels. Journal of Cleaner Production, 218, 511-520. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2019.01.180 Coelho, A., & de Brito, J. (2013). Environmental analysis of a construction and demolition waste recycling plant in Portugal – Part II: Environmental sensitivity analysis. Waste Management, 33(1), 147-161. Retrieved from: https://doi.org/https://doi.org/10.1016/j.wasman.2012.09.004 Ernst & Young Global Limited. (2022). EY Green Tax Tracker. Esa, M. R., Halog, A., & Rigamonti, L. (2017). Developing strategies for managing construction and demolition wastes in Malaysia based on the concept of circular economy. Journal of Material Cycles and Waste Management, 19(3), 1144-1154. Retrieved from: https://doi.org/10.1007/s10163-016-0516-x Feliciano, R. J., Guzmán-Luna, P., Boué, G., Mauricio-Iglesias, M., Hospido, A., & Membré, J.-M. (2022). Strategies to mitigate food safety risk while minimizing environmental impacts in the era of climate change. Trends in Food Science & Technology. Retrieved from: https://doi.org/https://doi.org/10.1016/j.tifs.2022.02.027 Feng, D., Shen, C., & Pei, Z. (2021). Production decisions of a closed-loop supply chain considering remanufacturing and refurbishing under government subsidy. Sustainable Production and Consumption, 27, 2058-2074. Retrieved from: https://doi.org/https://doi.org/10.1016/j.spc.2021.04.034 Freire-González, J., Martinez-Sanchez, V., & Puig-Ventosa, I. (2022). Tools for a circular economy: Assessing waste taxation in a CGE multi-pollutant framework. Waste Management, 139, 50-59. Retrieved from: https://doi.org/https://doi.org/10.1016/j.wasman.2021.12.016 Gallego-Schmid, A., Chen, H.-M., Sharmina, M., & Mendoza, J. M. F. (2020). Links between circular economy and climate change mitigation in the built environment. Journal of Cleaner Production, 260, 121115. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121115 Gao, H., Tian, X., Zhang, Y., Shi, L., & Shi, F. (2021). Evaluating circular economy performance based on ecological network analysis: A framework and application at city level. Resources, Conservation and Recycling, 168, 105257. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105257 Ghaith, Z., Kulshreshtha, S., Natcher, D., & Cameron, B. T. (2021). Regional Computable General Equilibrium models: A review. Journal of Policy Modeling, 43(3), 710-724. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jpolmod.2021.03.005 Gibbs, D., & Jonas, A. E. G. (2000). Governance and regulation in local environmental policy: the utility of a regime approach. Geoforum, 31(3), 299-313. Retrieved from: https://doi.org/https://doi.org/10.1016/S0016-7185(99)00052-4 Hashimoto, S., Fujita, T., Geng, Y., & Nagasawa, E. (2010). Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki. Resources, Conservation and Recycling, 54(10), 704-710. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2009.11.013 Hawkins, E. (2020). 2019 years. Climate Lab Book. Retrieved from: https://www.climate-lab-book.ac.uk/2020/2019-years/ He, W., Zhang, L., & Yuan, C. (2022). Future air temperature projection in high-density tropical cities based on global climate change and urbanization – a study in Singapore. Urban Climate, 42, 101115. Retrieved from: https://doi.org/https://doi.org/10.1016/j.uclim.2022.101115 Heidrich, O., Dawson, R. J., Reckien, D., & Walsh, C. L. (2013). Assessment of the climate preparedness of 30 urban areas in the UK. Climatic Change, 120(4), 771-784. Retrieved from: https://doi.org/10.1007/s10584-013-0846-9 Herczeg, M., McKinnon, D., Milios, L., Bakas, I., Klaassens, E., Svatikova, K., & Widerberg, O. (2014). Resource efficiency in the building sector: Final report. European Commission, DG Environment, Rotterdam. Hickel, J., & Kallis, G. (2020). Is Green Growth Possible? New Political Economy, 25(4), 469-486. Retrieved from: https://doi.org/10.1080/13563467.2019.1598964 Hoogmartens, R., Eyckmans, J., & Van Passel, S. (2016). Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams. Waste Management, 55, 345-354. Retrieved from: https://doi.org/https://doi.org/10.1016/j.wasman.2016.03.052 Hunt, A., & Watkiss, P. (2011). Climate change impacts and adaptation in cities: a review of the literature. Climatic Change, 104(1), 13-49. Retrieved from: https://doi.org/10.1007/s10584-010-9975-6 IPCC. (2007). Climate Change 2007: The Physical Science Basis. IPCC. (2018). Global Warming of 1.5°C. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Jiang, H.-D., Hao, W.-T., Xu, Q.-Y., & Liang, Q.-M. (2020). Socio-economic and environmental impacts of the iron ore resource tax reform in China: A CGE-based analysis. Resources Policy, 68, 101775. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resourpol.2020.101775 Jin, R., Yuan, H., & Chen, Q. (2019). Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources, Conservation and Recycling, 140, 175-188. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2018.09.029 Khmara, Y., & Kronenberg, J. (2018). Degrowth in business: An oxymoron or a viable business model for sustainability? Journal of Cleaner Production, 177, 721-731. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.182 Kirchherr, J. (2022). Circular economy and growth: A critical review of “post-growth” circularity and a plea for a circular economy that grows. Resources, Conservation and Recycling, 179, 106033. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2021.106033 Kongboon, R., Gheewala, S. H., & Sampattagul, S. (2022). Greenhouse gas emissions inventory data acquisition and analytics for low carbon cities. Journal of Cleaner Production, 343, 130711. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130711 Li, N., Zhang, X., Shi, M., & Hewings, G. J. D. (2019). Does China's air pollution abatement policy matter? An assessment of the Beijing-Tianjin-Hebei region based on a multi-regional CGE model. Energy Policy, 127, 213-227. Retrieved from: https://doi.org/https://doi.org/10.1016/j.enpol.2018.12.019 Lindsey, R. (2021). Climate Change: Atmospheric Carbon Dioxide. NOAA Climate.gov. Retrieved from: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide Liu, J., Wu, P., Jiang, Y., & Wang, X. (2021). Explore potential barriers of applying circular economy in construction and demolition waste recycling. Journal of Cleaner Production, 326, 129400. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129400 Liu, Y., Tan, X.-J., Yu, Y., & Qi, S.-Z. (2017). Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model. Applied Energy, 189, 762-769. Retrieved from: https://doi.org/https://doi.org/10.1016/j.apenergy.2016.05.085 Liu, Z., Adams, M., Cote, R. P., Chen, Q., Wu, R., Wen, Z., Liu, W., & Dong, L. (2018). How does circular economy respond to greenhouse gas emissions reduction: An analysis of Chinese plastic recycling industries. Renewable and Sustainable Energy Reviews, 91, 1162-1169. Retrieved from: https://doi.org/https://doi.org/10.1016/j.rser.2018.04.038 Material Economics. (2018). The Circular Economy - A Powerful Force for Climate Mitigation. Nesterova, I. (2020). Degrowth business framework: Implications for sustainable development. Journal of Cleaner Production, 262, 121382. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121382 NOAA. (2022). Trends in Atmospheric Carbon Dioxide. National Oceanic and Atmospheric Administration. Retrieved from: https://gml.noaa.gov/ccgg/trends/global.html OECD. (2011). Fostering Innovation for Green Growth. OECD. Retrieved from: https://doi.org/10.1787/9789264119925-en OECD. (2020). Environmental taxation. Retrieved from: https://www.oecd.org/env/tools-evaluation/environmentaltaxation.htm Paiho, S., Mäki, E., Wessberg, N., Paavola, M., Tuominen, P., Antikainen, M., Heikkilä, J., Rozado, C. A., & Jung, N. (2020). Towards circular cities—Conceptualizing core aspects. Sustainable Cities and Society, 59, 102143. Retrieved from: https://doi.org/https://doi.org/10.1016/j.scs.2020.102143 Papageorgiou, A., Henrysson, M., Nuur, C., Sinha, R., Sundberg, C., & Vanhuyse, F. (2021). Mapping and assessing indicator-based frameworks for monitoring circular economy development at the city-level. Sustainable Cities and Society, 75, 103378. Retrieved from: https://doi.org/https://doi.org/10.1016/j.scs.2021.103378 Peng, Z., Lu, W., & Webster, C. J. (2021). Quantifying the embodied carbon saving potential of recycling construction and demolition waste in the Greater Bay Area, China: Status quo and future scenarios. Science of The Total Environment, 792, 148427. Retrieved from: https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148427 Petit-Boix, A., & Leipold, S. (2018). Circular economy in cities: Reviewing how environmental research aligns with local practices. Journal of Cleaner Production, 195, 1270-1281. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2018.05.281 Razzaq, A., Sharif, A., Najmi, A., Tseng, M.-L., & Lim, M. K. (2021). Dynamic and causality interrelationships from municipal solid waste recycling to economic growth, carbon emissions and energy efficiency using a novel bootstrapping autoregressive distributed lag. Resources, Conservation and Recycling, 166, 105372. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105372 Reckien, D., Flacke, J., Dawson, R. J., Heidrich, O., Olazabal, M., Foley, A., Hamann, J. J. P., Orru, H., Salvia, M., De Gregorio Hurtado, S., Geneletti, D., & Pietrapertosa, F. (2014). Climate change response in Europe: what’s the reality? Analysis of adaptation and mitigation plans from 200 urban areas in 11 countries. Climatic Change, 122(1), 331-340. Retrieved from: https://doi.org/10.1007/s10584-013-0989-8 Rios, F. C., Panic, S., Grau, D., Khanna, V., Zapitelli, J., & Bilec, M. (2022). Exploring circular economies in the built environment from a complex systems perspective: A systematic review and conceptual model at the city scale. Sustainable Cities and Society, 80, 103411. Retrieved from: https://doi.org/https://doi.org/10.1016/j.scs.2021.103411 Rogora, M., Frate, L., Carranza, M. L., Freppaz, M., Stanisci, A., Bertani, I., Bottarin, R., Brambilla, A., Canullo, R., Carbognani, M., Cerrato, C., Chelli, S., Cremonese, E., Cutini, M., Di Musciano, M., Erschbamer, B., Godone, D., Iocchi, M., Isabellon, M., . . . Matteucci, G. (2018). Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of The Total Environment, 624, 1429-1442. Retrieved from: https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.12.155 Sahlin, J., Ekvall, T., Bisaillon, M., & Sundberg, J. (2007). Introduction of a waste incineration tax: Effects on the Swedish waste flows. Resources, Conservation and Recycling, 51(4), 827-846. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2007.01.002 Satterthwaite, D. (2011). How urban societies can adapt to resource shortage and climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1942), 1762-1783. Retrieved from: https://doi.org/10.1098/rsta.2010.0350 Scheffers Brett, R., De Meester, L., Bridge Tom, C. L., Hoffmann Ary, A., Pandolfi John, M., Corlett Richard, T., Butchart Stuart, H. M., Pearce-Kelly, P., Kovacs Kit, M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden Wendy, B., Martin Tara, G., Mora, C., Bickford, D., & Watson James, E. M. (2016). The broad footprint of climate change from genes to biomes to people. Science, 354(6313), aaf7671. Retrieved from: https://doi.org/10.1126/science.aaf7671 Schultz, F. C. (2022). The circular economy and economic growth – An irreconcilable tradeoff? Resources, Conservation and Recycling, 183, 106351. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106351 Shen, L. Y., Li Hao, J., Tam, V. W. Y., & Yao, H. (2007). A checklist for assessing sustainability performance of construction projects. Journal of Civil Engineering and Management, 13(4), 273-281. Retrieved from: https://doi.org/10.1080/13923730.2007.9636447 Shooshtarian, S., Maqsood, T., Caldera, S., & Ryley, T. (2022). Transformation towards a circular economy in the Australian construction and demolition waste management system. Sustainable Production and Consumption, 30, 89-106. Retrieved from: https://doi.org/https://doi.org/10.1016/j.spc.2021.11.032 Smulders, S., Toman, M., & Withagen, C. (2014). Growth theory and ‘green growth’. Oxford Review of Economic Policy, 30(3), 423-446. Retrieved from: https://doi.org/10.1093/oxrep/gru027 Sousa, V., & Bogas, J. A. (2021). Comparison of energy consumption and carbon emissions from clinker and recycled cement production. Journal of Cleaner Production, 306, 127277. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127277 Stahel, W. R. (2016). The circular economy. Nature, 531(7595), 435-438. Retrieved from: https://doi.org/10.1038/531435a Sun, L., Li, H., Dong, L., Fang, K., Ren, J., Geng, Y., Fujii, M., Zhang, W., Zhang, N., & Liu, Z. (2017). Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China. Resources, Conservation and Recycling, 119, 78-88. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2016.06.007 UN Department of Economic Social Affairs. (2018). World Urbanization Prospects: The 2018 Revision. In: United Nations New York, NY, USA. UNEP. (2012). Sustainable, Resource Efficient Cities - Making It Happen. Retrieved from: https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=1124&menu=35 Vadikkeettil, Y., Subramaniam, Y., Murugan, R., Ananthapadmanabhan, P. V., Mostaghimi, J., Pershin, L., Batiot-Dupeyrat, C., & Kobayashi, Y. (2022). Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends. Renewable and Sustainable Energy Reviews, 161, 112343. Retrieved from: https://doi.org/https://doi.org/10.1016/j.rser.2022.112343 Vehmas, J., & Luukkanen, J. (2003). Global trends of linking environmental stress and economic growth. Wang, S., Wang, X., & Lu, B. (2022). Is resource abundance a curse for green economic growth? Evidence from developing countries. Resources Policy, 75, 102533. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resourpol.2021.102533 Wang, Y., Chang, X., Chen, Z., Zhong, Y., & Fan, T. (2014). Impact of subsidy policies on recycling and remanufacturing using system dynamics methodology: a case of auto parts in China. Journal of Cleaner Production, 74, 161-171. Retrieved from: https://doi.org/https://doi.org/10.1016/j.jclepro.2014.03.023 Withana, S., ten Brink, P., Illes, A., Nanni, S., Watkins, E.,. (2014). Environmental Tax Reform in Europe: Opportunities for the future. Wong, C. W. Y., Lai, K.-h., Cheng, T. C. E., & Lun, Y. H. V. (2012). The roles of stakeholder support and procedure-oriented management on asset recovery. International Journal of Production Economics, 135(2), 584-594. Retrieved from: https://doi.org/https://doi.org/10.1016/j.ijpe.2011.05.009 World Bank. (2022). Population, total. The World Bank. Retrieved from: https://data.worldbank.org/indicator/SP.POP.TOTL Xie, J., & Saltzman, S. (2000). Environmental Policy Analysis: An Environmental Computable General-Equilibrium Approach for Developing Countries. Journal of Policy Modeling, 22(4), 453-489. Retrieved from: https://doi.org/https://doi.org/10.1016/S0161-8938(97)00076-8 Yang, X., Wang, X.-C., & Zhou, Z.-Y. (2018). Development path of Chinese low-carbon cities based on index evaluation. Advances in Climate Change Research, 9(2), 144-153. Retrieved from: https://doi.org/https://doi.org/10.1016/j.accre.2018.05.004 Zeller, V., Towa, E., Degrez, M., & Achten, W. M. J. (2019). Urban waste flows and their potential for a circular economy model at city-region level. Waste Management, 83, 83-94. Retrieved from: https://doi.org/https://doi.org/10.1016/j.wasman.2018.10.034 Zhao, Y., Wang, C., & Cai, W. (2022). Carbon pricing policy, revenue recycling schemes, and income inequality: A multi-regional dynamic CGE assessment for China. Resources, Conservation and Recycling, 181, 106246. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106246 Zhao, Z., Courard, L., Groslambert, S., Jehin, T., LÉOnard, A., & Xiao, J. (2020). Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study. Resources, Conservation and Recycling, 157, 104786. Retrieved from: https://doi.org/https://doi.org/10.1016/j.resconrec.2020.104786 中技社(2016)。2016台灣資源效率暨環境品質報告。 內政部戶政司(2022)。人口統計資料。 取自https://www.ris.gov.tw/app/portal/346 王塗發、楊浩彥、林幸君、賴金端(2020)。投入產出分析:理論與實務。財團法人台灣經濟研究院。 王毓正(1999)。環境公課(Umweltabgaben)之研究----以污染物排放費(Emmisionsabgaben)為中心。國立成功大學法律研究所碩士論文,台南市。 取自https://hdl.handle.net/11296/efc8tx 行政院國發會(2022)。臺灣 2050 淨零排放路徑及策略總說明。 行政院環境保護署(2014)。營建廢棄物管理策略(含營建剩餘土石方管制措施建議)。 吳炳玟(2018)。國家層級能資源消耗與脫鉤效應分析。國立臺灣師範大學地理學系碩士論文,台北市。 取自https://hdl.handle.net/11296/y7pass 李昀晟(2019)。產業朝循環經濟商業模式轉型對我國資源利用及經濟之效益評估-以共享汽車為例。國立臺灣大學環境工程學研究所碩士論文,台北市。取自https://hdl.handle.net/11296/v8uzkm 林晉勗、林師模(2019)。「一般均衡模型運用及政策模擬分析」結案報告。國家發展委員會。 侯永盛(2020)。108年稅收徵起情形分析。財政部統計處。 張其祿(2002)。環境管制:經濟誘因工具的選擇與評估。中國行政評論,11(3),45-62。 取自https://doi.org/10.6635/cpar.2002.11(3).02 黃榮堯、葉禮旭、郭烈銘、陳屏甫、潘榕萱、張煖(2020)。107年度及108年度「營建工程剩餘土石方資源回收處理與資訊交流及總量管制計畫」總結報告。內政部營建署。 楊浩彥(2017)。政策評估:多部門分析法。 經濟部統計處(2015)。常用經濟統計用語解釋。經濟部統計處。 經濟部礦務局(2017)。105年度砂土石產銷調查報告。經濟部礦務局。 劉春初(2005)。區域性可計算一般均衡模型之建立與應用研究-以南部區域為例。國立成功大學資源工程學系碩博士班博士論文,台南市。 取自https://hdl.handle.net/11296/smvvdt 蔡琮浩(2020)。環境特別公課相關法制問題研析。立法院法制局專題研究報告。 鄧為元(2008)。公課理論之研究─以收取原則為中心。國立臺灣大學法律學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/vy7bjk 賴彥廷(2021)。二次物料競爭模型建立之研究-以廢塑膠為例。國立臺灣大學環境工程學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/5s7669 營建剩餘土石方資訊服務中心(2022)。出土-土質統計。 取自https://www.soilmove.tw/soilmove/engQualFlowClass 環保署廢管處(2010)。化腐朽為神奇-營建廢棄物大變身 環保署實物展示。行政院環境保護署廢管。 取自https://enews.epa.gov.tw/page/3b3c62c78849f32f/19628dc9-ad21-4615-b091-7962b1254b53 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85558 | - |
| dc.description.abstract | 循環經濟被認為是重要的減碳策略,能以此減緩氣候變遷。而都市地區人口集中,並消耗大量的自然資源,因此都市地區的循環經濟潛力相當大。由於各個區域的社會文化背景、環境問題存在著相當大的差異,因地制宜的管理方式可能相對有效。因此以都市為主體的區域性循環經濟策略近年來日益受到重視。然而,都市制定的循環經濟策略對於經濟方面的影響以及減碳的效果,充滿著不確定性。因此政策評估模型的角色就顯得相當重要,透過政策評估模型的輔助,可事先評估政策的效果,以確保政策的有效性。然而,目前可用於都市層級循環經濟政策的政策評估模型卻寥寥無幾。 因此,本研究以區域可計算一般均衡模型(區域CGE模型),搭配碳盤查模型,建立區域性循環經濟政策評估模型。將全國劃分成七個區域,分別是六個直轄市,以及六都以外的其他地區。並以建築廢棄物為例,進行地方層級的循環經濟政策評估,以供決策者作為制定政策時之參考。 研究結果顯示,對於台北而言,實施補貼再生建築材料業之政策以及實施補貼再生建築材料業並向污染整治業課徵環境特別公課之政策能有效促進建築廢棄物的資源循環,且前者為最佳之循環經濟促進政策。然而台北實施補貼再生建築材料業之政策時,會因為再生建築材料業的擴張而帶動台北地區其他產業的發展,導致台北的溫室氣體排放量上升,無法實現循環經濟預期的減碳效果。但是對於整個國家而言,台北實施補貼再生建築材料業之政策卻能使全國的溫室氣體排放總量減少,且GDP增加,達成最理想的脫鉤情況。因此循環經濟的推動並不一定只會造成減碳的效果,也有可能反而會使碳排增加。而政策效果究竟如何,需仰賴區域性循環經濟政策評估模型來評估。 本研究建立之區域性循環經濟政策評估模型,最大的優點在於其將評估的對象從國家層級擴展到地方層級,可模擬區域性的政策、評估地方層級的影響效果、呈現各個區域的個別產業受政策影響之情形。此為多數政策評估模型所無法評估之項目。 | zh_TW |
| dc.description.abstract | The circular economy is regarded as an important carbon reduction strategy, and it has recently been applied for climate change mitigation. For the circular economy, urban areas are high potential because of their high-density population and consumption of many natural resources. Effective urban managements have to suit the city’s measures to local conditions according to the sociocultural context and environmental issues. Hence, circular economy strategies at the city level have received more and more attention in recent years. However, the effect of the circular economy strategy, which is developed by the city to reduce greenhouse gas and improve the economy, is unexpected. Ensuring the effectiveness of the policy can be projected by models in advance to decrease the cost and mistakes when implementing policy. However, few policy evaluation models are currently available for circular economy policies at the city level. Therefore, this study establishes a regional circular economy policy evaluation model consisting of a regional computable general equilibrium model and carbon inventory model to assess the effectiveness of circular economy policies at the city level. Taking construction and demolition waste recycling as an example, subsidizing the recycled building materials industry and levying special common levies for the environment on pollution control industries are applied for promoting the reuse of construction and demolition waste only in Taipei. As a result, subsidizing the recycled building materials industry can promote not only the development of the recycled building materials industry but also the decoupling indicator for Taipei. Conversely, subsidizing the recycled building materials industry will increase greenhouse gas emissions in Taipei due to repercussions between industries. But for the whole of Taiwan, the action in Taipei can reduce the national greenhouse gas emissions and increase the GDP, which achieves the ideal decoupling situation. The effectiveness of the circular economy may be unexpected in decreasing or increasing greenhouse gas emissions; hence the effect of the policy needs to be assessed through a regional circular economy policy evaluation model. The most significant advantage of the regional circular economy policy evaluation model established in this study is that this model increase resolution from the national level to the city level. High resolution can simulate regional policies, assess impacts at the city level, and present the effect of individual industries in each region affected by the policy, which most policy evaluation models are not available. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:18:33Z (GMT). No. of bitstreams: 1 U0001-0407202202195200.pdf: 4717269 bytes, checksum: 5ace8c31f0c97a3056cd54984b9366bf (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 iii Abstract v 目錄 vii 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 4 1.3 研究架構 4 第二章 文獻回顧 6 2.1 溫室氣體所造成之氣候風險 6 2.2 循環經濟模式 12 2.2.1 循環經濟策略對碳排放量之影響 13 2.2.2 循環經濟策略對經濟之影響 15 2.2.3 促進資源循環之經濟誘因 18 2.2.4 都市層級的循環經濟 23 2.3 建築廢棄物之循環利用潛力 25 2.4 以CGE模型評估循環政策 30 第三章 研究方法 35 3.1 研究流程 35 3.2 情境設定 37 3.3 區域CGE模型 39 3.3.1 模型簡介 39 3.3.2 社會會計矩陣(SAM表)之建立 42 3.3.3 CGE模型經濟數學方程式 53 3.4 碳盤查模型 60 3.4.1 模型簡介 60 3.4.2 碳盤查模型之建立 62 第四章 結果與討論 63 4.1 循環經濟策略對建築材料業之影響 65 4.2 補貼再生建築材料業政策之效果 68 4.3 課徵環境特別公課政策之效果 81 4.4 補貼再生建築材料業政策加課徵環境特別公課政策之效果 90 4.5 循環經濟策略之比較 98 4.5.1 經濟及環境影響之比較 98 4.5.2 再生資源生產力及環境衝擊影響之比較 99 4.6 循環經濟策略之波及效果 102 第五章 結論與建議 108 5.1 結論 108 5.2 建議 111 參考文獻 115 | |
| dc.language.iso | zh-TW | |
| dc.subject | 循環經濟 | zh_TW |
| dc.subject | 政策評估 | zh_TW |
| dc.subject | 碳盤查 | zh_TW |
| dc.subject | 區域CGE模型 | zh_TW |
| dc.subject | 溫室氣體 | zh_TW |
| dc.subject | 建築廢棄物 | zh_TW |
| dc.subject | Construction and Demolition Waste | en |
| dc.subject | Policy Evaluation | en |
| dc.subject | Carbon Inventory | en |
| dc.subject | Regional CGE Model | en |
| dc.subject | Greenhouse Gas | en |
| dc.subject | Circular Economy | en |
| dc.title | 以區域CGE模型評估建築廢棄物循環利用對溫室氣體排放及經濟之影響 | zh_TW |
| dc.title | Assessing the Effect of Construction and Demolition Waste Recycling on Greenhouse Gas Emissions and Economy with Regional Computable General Equilibrium Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄒倫(Leon Tzou),楊浩彥(Hao-Yen Yang) | |
| dc.subject.keyword | 循環經濟,建築廢棄物,溫室氣體,區域CGE模型,碳盤查,政策評估, | zh_TW |
| dc.subject.keyword | Circular Economy,Construction and Demolition Waste,Greenhouse Gas,Regional CGE Model,Carbon Inventory,Policy Evaluation, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU202201260 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-08 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0407202202195200.pdf | 4.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
