Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈俊嚴(Chun-Yen Shen)
dc.contributor.authorYung-Chang Hsuen
dc.contributor.author徐永昌zh_TW
dc.date.accessioned2021-05-20T00:57:12Z-
dc.date.available2021-02-22
dc.date.available2021-05-20T00:57:12Z-
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-01-26
dc.identifier.citationLennart Carleson. “On convergence and growth of partial sums of Fourier series”. In: Acta Math. 116 (1966), pp. 135–157. doi: 10. 1007/BF02392815. url: https://doi.org/10.1007/BF02392815.
Charles Fefferman. “Pointwise Convergence of Fourier Series”. In: Annals of Mathematics 98.3 (1973), pp. 551–571. issn: 0003486X. url: http://www.jstor.org/stable/1970917.
Michael Lacey and Christoph Thiele. “Lp Estimates on the Bilinear Hilbert Transform for 2 < p < ∞”. In: Annals of Mathematics 146.3 (1997), pp. 693–724. issn: 0003486X. url: http://www.jstor.org/ stable/2952458.
Michael Lacey and Christoph Thiele. “A proof of boundedness of the Carleson operator”. In: Mathematical Research Letters 7 (July 2000), pp. 361–370. doi: 10.4310/MRL.2000.v7.n4.a1.
J. Duoandikoetxea et al. Fourier Analysis. American Mathematical Society, 2001. isbn: 9780821821725. url: https://books.google. com.tw/books?id=6fgRCgAAQBAJ.
Elias M. Stein and Stephen Wainger. “Oscillatory integrals related to Carleson’s theorem”. In: Mathematical Research Letters 8.6 (2001), pp. 789–800. doi: 10.4310/mrl.2001.v8.n6.a9. url: https: //doi.org/10.4310%2Fmrl.2001.v8.n6.a9.
Victor Lie. The (weak-L2) Boundedness of The Quadratic Carleson Operator. 2008. arXiv: 0710.2168 [math.CA].
Michael Bateman and Christoph Thiele. “Lp estimates for the Hilbert transforms along a one-variable vector field”. In: Analysis PDE 6.7 (Dec. 2013), pp. 1577–1600. issn: 2157-5045. doi: 10.2140/ apde.2013.6.1577. url: http://dx.doi.org/10.2140/apde. 2013.6.1577.
Andrei K. Lerner and Fedor Nazarov. Intuitive dyadic calculus: the basics. 2015. arXiv: 1508.05639 [math.CA].
Pavel Zorin-Kranich. Modulation invariant operators. 2019. arXiv: 1902.10577 [math.CA].
Victor Lie. “The Polynomial Carleson operator”. In: Annals of Math- ematics 192.1 (2020), pp. 47–163. issn: 0003486X, 19398980. url: https://www.jstor.org/stable/10.4007/annals.2020.192.1. 2.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8548-
dc.description.abstract本文針對多項式卡爾松算子高維推廣在勒貝格空間下的有界性作深入探討。相比於Victor Lie與Pavel Zorin-Kranich之前的工作,該文章的主要貢獻包含:以具體的構造法來確認細節論證、用稀疏算子的語言來重新詮釋部分證明、及提供一個具教學啟發性的完整說明。zh_TW
dc.description.abstractWe deeply study the Lp boundedness of the generalization of Polynomial Carleson Operator. Our main contributions, comparing to previous works done by Victor Lie and by Pavel Zorin-Kranich, are to verify de- tails with explicit constructions, modify some part with language of Sparse Dominance, and provide a heuristic interpretation about the whole treatment in general.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:57:12Z (GMT). No. of bitstreams: 1
U0001-2501202116313700.pdf: 1045869 bytes, checksum: 7a6b49b8c5f3667f7c8e1c6da112eaa7 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents1 Introduction 2
1.1 BasicNotions............................. 3
1.2 Motivation .............................. 5
1.3 MainResult.............................. 8
2 Mathematical Jigsaw Puzzle 10
2.1 Cut out the Pieces .......................... 10
2.2 Find Good Configurations...................... 11
2.3 Combinatorial Wizardry and Analytic Magecraft . . . . . . . . . 12
3 Tools and Facts 13
3.1 Local Oscillation of Polynomial................... 13
3.2 Van der Corput Estimate ...................... 14
3.3 Sparse Language and Ambient System............... 15
3.4 Modified Settings........................... 16
4 Decomposition of the Operator 19
4.1 Reduction and Linearization..................... 19
4.2 Tile Decomposition and Trivial Estimate. . . . . . . . . . . . . . 20
4.3 Adaptive Christ Grid Construction................. 22
5 From Incidental Geometry to Order Theory and Combinatorics 24
5.1 Conversion and Basic Operations.................. 24
5.2 Geometric and Analytic Interaction................. 26
5.3 Feffermann’s Trick .......................... 30
5.4 Boundary Removal.......................... 36
5.5 Separation Upgrade ......................... 38
6 Search for Good Trades 39
6.1 Trade-off: Polynomial v.s. Exponential............... 39
6.2 Charles Fefferman’s Exceptional Set ................ 42
6.3 Victor Lie’s Stopping Collection................... 43
6.4 PavelZorin-Kranich’s Modifications ................ 46
6.5 Explicit Construction of Smooth Carpet . . . . . . . . . . . . . . 50
7 Sparse Domination of Sparse Parts 53
7.1 Reductions .............................. 53
7.2 Sparse Dominance .......................... 58
7.3 Density Extraction.......................... 60
8 TT* - T*T Arguments for Cluster Parts 64
8.1 Reductions .............................. 64
8.2 Pointwise Control on Cluster .................... 67
8.3 Extraction of Separation Factor................... 73
8.4 Support Restriction and Cross-Level Decay . . . . . . . . . . . . 78
8.5 Row Configuration .......................... 80
8.6 Almost Orthogonality ........................ 82
8.7 Bateman’s Extrapolation Argument ................ 84
References 93
dc.language.isoen
dc.title多項式調變不變奇異積分算子zh_TW
dc.titlePolynomial Modulation Invariant Singular Integral Operatoren
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王振男(Jenn-Nan Wang),黃啟瑞(Chii-Ruey Hwang)
dc.subject.keyword時頻分析,多重解析度分析,CZ算子,稀疏壓制,TT*-T*T方法,zh_TW
dc.subject.keywordTime-Frequency Analysis,Multi-Resolution Analysis,CZO,Sparse Dominance,TT* method,en
dc.relation.page93
dc.identifier.doi10.6342/NTU202100160
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-01-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-2501202116313700.pdf1.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved