請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85471完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆(Fei-Pei Lai) | |
| dc.contributor.author | Xuan-Yu Lu | en |
| dc.contributor.author | 呂軒羽 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:17:04Z | - |
| dc.date.copyright | 2022-07-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-13 | |
| dc.identifier.citation | [1] Ministry of Health and Welfare 2020. https://www.mohw.gov.tw/cp-5017-61533-1.html [2] S. Pereira, A. Pinto, V. Alves and C. A. Silva, 'Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images,' in IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1240-1251, 2016. [3] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, Dave Bacon. Federated Learning: Strategies for Improving Communication Efficiency. Cornell University. 2016. [4] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2, Article 12 (March 2019), 19 pages. https://doi.org/10.1145/3298981 [5] Federated Learning. https://federated.withgoogle.com [6] Tian Li; Anit Kumar Sahu. Federated Learning: Challenges, Methods, and Future Directions. volume: 37, pages 50-60, IEEE Signal Processing Magazine, 2020. [7] H. Brendan McMahan, Eider Moore, Daniel Ramage, Blaise Agüera y Arcas. Federated Learning of Deep Networks using Model Averaging. 2016. [8] NVIDIA 2019. https://blogs.nvidia.com.tw/2019/10/13/what-is-federated-learning/ [9] Ng, Dianwen et al. “Federated learning: a collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets.” Quantitative imaging in medicine and surgery vol. 11.2 page: 852-857, 2021. [10] NVIDIA 2021. https://developer.nvidia.com/blog/nvidia-data-scientists-take-top-spots-in-miccai-2021-brain-tumor-segmentation-challenge/ [11] P. Sharma and A. P. Shukla, 'A Review on Brain Tumor Segmentation and Classification for MRI Images,' 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) page: 963-967 2021. [12] Reuben R Shamir, Yuval Duchin, Jinyoung Kim, Guillermo Sapiro, Noam Harel. Continuous Dice Coefficient: A Method for Evaluating Probabilistic Segmentations, 2019. [13] B. Camajori Tedeschini et al., 'Decentralized Federated Learning for Healthcare Networks: A Case Study on Tumor Segmentation,' in IEEE Access, vol: 10, page: 8693-8708, 2022. [14] Pengfei Guo, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, Vishal M. Patel. Multi-Institutional Collaborations for Improving Deep Learning-Based Magnetic Resonance Image Reconstruction Using Federated Learning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Page: 2423-2432, 2021. [15] Jason Brownlee. Understand the Impact of Learning Rate on Neural Network Performance. Deep Learning Performance, 2019. [16] Aitor Lewkowycz. How to decay your learning rate, Cornell University, 2021. [17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014. [18] Krishna Rastogi. Using MONAI Framework for medical imaging research. https://analyticsindiamag.com/monai-datatsets-managers/ 2020. [19] Stollmayer, R.; Budai, B.K.; Rónaszéki, A.; Zsombor, Z.; Kalina, I.; Hartmann, E.; Tóth, G.; Szoldán, P.; Bérczi, V.; Maurovich-Horvat, P.; Kaposi, P.N. Focal Liver Lesion MRI Feature Identification Using Efficientnet and MONAI: A Feasibility Study. Cells 2022, 11, 1558. https://doi.org/10.3390/cells11091558 [20] MONAI, Medical open network for artificial intelligence. https://monai.io [21] Clara Train SDK Documentation https://docs.nvidia.com/clara/clara-train-sdk/index.html [22] Sohn, J., Chillakuru, Y.R., Lee, S. et al. An Open-Source, Vender Agnostic Hardware and Software Pipeline for Integration of Artificial Intelligence in Radiology Workflow. J Digit Imaging 33, 1041–1046 (2020). https://doi.org/10.1007/s10278-020-00348-8. [23] T. Eelbode et al., 'Optimization for Medical Image Segmentation: Theory and Practice When Evaluating with Dice Score or Jaccard Index,' in IEEE Transactions on Medical Imaging, vol. 39, no. 11, pp. 3679-3690, Nov. 2020, doi: 10.1109/TMI.2020.3002417. [24] Jeroen Bertels, Tom Eelbode, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Bisschops, Matthew Blaschko. Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory & Practice, Cornell University, 2019. [25] A. Taha and A. Hanbury, “Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool,” BMC medical imaging, vol. 15, p. 29, 2015. [26] Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0 [27] Chen, X., Cheng, G., Cai, Y., Wen, D., Li, H. (2016). Semantic Segmentation with Modified Deep Residual Networks. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 663. Springer, Singapore. https://doi.org/10.1007/978-981-10-3005-5_4 [28] Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015). [29] Ding, L., Wang, Y., Laganière, R. et al. Multi-scale predictions fusion for robust hand detection and classification. Multimed Tools Appl 78, 35633–35650 (2019). https://doi.org/10.1007/s11042-019-08080-4 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85471 | - |
| dc.description.abstract | 近年來隨著深度神經網路的蓬勃發展,也越來越多使用於醫學影像的相關研究,其中腦腫瘤分割模型的訓練正是其一。不過,很多醫療院所礙於資料集的數量小,沒有辦法達到最佳化的模型訓練,容易有Overfitting等等的問題,然而資料集共享又會衍生出許多像是病人隱私、合法性及資料擁有權的問題。在這樣的前提下聯邦學習的訓練模式便是極佳的選擇。 聯邦學習是一種能夠同時保障資料安全性,並達到分散式學習的方法。在聯邦學習的學習過程中,模型會由伺服器端送至客戶端進行訓練,每訓練一個節點,客戶端便會回傳模型參數回伺服器端,讓伺服器可以進行模型調整,再送回客戶端持續進行訓練。在訓練過程中同時達到資料不共享,但資料量加成提供模型學習的優勢,便是聯邦學習崛起的起因。 而我們該如何運用聯邦學習的模式來幫助醫院之間,在資料不共享的前提下幫助腦瘤分割模型的訓練發展,使資料量不足的醫療院所也可以訓練出良好的腦瘤分割模型就成了很重要的任務。 本篇論文使用了Clara SDK 4.0版本作為開發的環境,也運用了MONAI來作為深度學習應用於醫學影像訓練的框架。在針對兩間醫院的數據集訓練過後,發現進行聯邦學習之後可以大幅降低資料集小的醫院訓練結果的擬合過度,也提升了訓練的結果的Dice係數。 | zh_TW |
| dc.description.abstract | More and more research about medical images recently arose, with deep neuron networks thriving. Research about brain tumor segmentation was one of them. But many medical institutions can’t reach the best model training due to the lack of data. It’s easy to get problems with overfitting, etc. However, the sharing of datasets is a significant challenge due to patients' privacy, legal issues, and also data-ownership issues. To face such issues, Federated Learning is one of the best remedies. Federated learning is a way of training that can ensure data security and reach distributed learning spontaneously. The model will be transferred from the server-side to the client-side during federated learning. Each time a node is trained, the client will send the model parameters back to the server. Then the server will adjust the model and send it back to the client for continuous training. In the training process, data are not shared at the same time. But the increased data volume provides the advantage of model learning, which is why federated learning is rising. It is an essential task for us to see how we can use federated learning to improve the brain tumor segmentation model development without sharing data in medical institutions that lack data so that those institutions can also train a robust brain tumor segmentation model. In the thesis, Clara SDK 4.0 is used for the development environment. Besides, MONAI (Medical Open Network for AI) is used as a deep learning frame in medical image training. After training on the datasets of two hospitals, it was found that federated learning can significantly reduce the overfitting of the training results of hospitals with small datasets. In addition, it can also improve the dice score of the training results. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:17:04Z (GMT). No. of bitstreams: 1 U0001-1107202211023500.pdf: 3784853 bytes, checksum: 7f5ec2323d3380ecd452a28dae92a935 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Background 2 Chapter 2 Related Work 4 2.1 Overview of Federated Learning 4 2.2 Brain Tumor Segmentation Based on Federated Learning 7 2.3 Learning Rate 9 2.4 Dropout 10 2.5 MONAI (Medical Open Network for AI) 10 2.6 NVIDIA Clara SDK 11 2.7 Evaluation Metrics 11 Chapter 3 Materials 14 3.1 Data Privacy 15 3.2 Data Analysis 16 3.3 Data Preprocessing and Standardization 19 3.4 Data Augmentation 20 3.5 Data Postprocessing 21 3.6 Data Split 22 Chapter 4 Methodology 25 4.1 Federated Learning Environment 26 4.2 Deep Learning Model (SegResNet) 30 Chapter 5 Results 32 5.1 Local Training Results 32 5.2 Local Training Results after Data Selection 35 5.3 Federated Learning Results and Comparison 38 Chapter 6 Discussion 46 6.1 Principal Findings 46 6.2 Limitations 46 Chapter 7 Conclusions and Future Work 48 7.1 Conclusions 48 7.2 Future Work 48 Bibliography 50 | |
| dc.language.iso | en | |
| dc.subject | 醫學影像 | zh_TW |
| dc.subject | 腦腫瘤切割模型 | zh_TW |
| dc.subject | 聯邦學習 | zh_TW |
| dc.subject | 少量資料集 | zh_TW |
| dc.subject | 深度神經網路 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | Deep learning | en |
| dc.subject | Lack of data | en |
| dc.subject | Brain Tumor Segmentation | en |
| dc.subject | Federated Learning | en |
| dc.subject | Medical image | en |
| dc.subject | Deep neuron network | en |
| dc.title | 以聯邦學習提升少量資料之腦腫瘤切割模型訓練成效 | zh_TW |
| dc.title | Based on Federated Learning to Improve the Performance of Brain Tumor Segmentation Model with Small Datasets | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭輔仁(Fu-Ren Xiao),黃維誠(Wei-Cheng Huang),許凱平(Kai-Ping Hsu),廖御佐(Yu-Tso Liao) | |
| dc.subject.keyword | 聯邦學習,腦腫瘤切割模型,深度學習,醫學影像,少量資料集,深度神經網路, | zh_TW |
| dc.subject.keyword | Deep neuron network,Deep learning,Medical image,Federated Learning,Brain Tumor Segmentation,Lack of data, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202201391 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-26 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1107202211023500.pdf | 3.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
