請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85456完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡植慶(Jyr-Ching Hu) | |
| dc.contributor.author | Jun-Yan Chen | en |
| dc.contributor.author | 陳俊諺 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:16:52Z | - |
| dc.date.copyright | 2022-07-20 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-15 | |
| dc.identifier.citation | Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40, 2375–2383. https://doi.org/10.1109/TGRS.2002.803792 Chen, S.-C., Hsu, S.-K., Wang, Y.-S., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S., Lee, Y.-W., 2014. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. J. Asian Earth Sci. 92, 201–214. https://doi.org/10.1016/j.jseaes.2013.10.009 Cheng, C.-T., Chiou, S.-J., Lee, C.-T., Tsai, Y.-B., 2007. Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. J. GeoEng. 2, 19–28. https://doi.org/10.6310/jog.2007.2(1).3 Chi, W.-R., 1979. A biostratigraphic study of the Late Neogene sediments in the Kaohsiung area based on calcareous Nannofossils. Proc. Geol. Soc. China 22, 121–144. Ching, K.-E., Rau, R.-J., Johnson, K.M., Lee, J.-C., Hu, J.-C., 2011. Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995–2005. J. Geophys. Res.: Solid Earth 116, B09405. https://doi.org/10.1029/2010JB008058 Ching, K.-E., Rau, R.-J., Lee, J.-C., Hu, J.-C., 2007. Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth Planet. Sci. Lett. 262, 601–619. https://doi.org/10.1016/j.epsl.2007.08.017 Choi, E., Tan, E., Lavier, L.L., Calo, V.M., 2013. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation. J. Geophys Res.: Solid Earth 118, 2429–2444. https://doi.org/10.1002/jgrb.50148 Costa, E., Vendeville, B.C., 2002. Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic décollement. J. Struct. Geol. 24, 1729–1739. https://doi.org/10.1016/S0191-8141(01)00169-9 Cundall, P., Board, M., 1988. A microcomputer program for modeling large-strain plasticity problems. In: Swoboda, G. (Ed.), Numerical Methods in Geomechanics. Proc. 6th Int. Conf. on Numer. Meth. in Geomechanics, Innsbruck, pp. 2101–2108, Balkema, Rotterdam. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S.D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C.P., Lague, D., Lin, J.-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651. https://doi.org/10.1038/nature02150 De Zan, F., Monti Guarnieri, A., 2006. TOPSAR: Terrain observation by progressive scans. IEEE Trans. Geosci. Remote Sens. 44, 2352–2360. https://doi.org/10.1109/TGRS.2006.873853 Dean, S., Morgan, J., Brandenburg, J.P., 2015. Influence of mobile shale on thrust faults: Insights from discrete element simulations. AAPG Bull. 99, 403–432. https://doi.org/10.1306/10081414003 Deffontaines, B., Lacombe, O., Angelier, J., Chu, H.T., Mouthereau, F., Lee, C.T., Deramond, J., Lee, J.F., Yu, M.S., Liew, P.M., 1997. Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach. Tectonophysics 274, 61–82. https://doi.org/10.1016/S0040-1951(96)00298-3 Doo, W.-B., Hsu, S.-K., Lo, C.-L., Chen, S.-C., Tsai, C.-H., Lin, J.-Y., Huang, Y.-P., Huang, Y.-S., Chiu, S.-D., Ma, Y.-F., 2015. Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophys. J. Int. 203, 2089–2098. https://doi.org/10.1093/gji/ggv430 Fletcher, K., European Space Agency, European Space Research and Technology Centre (Eds.), 2007. InSAR principles: guidelines for SAR interferometry processing and interpretation, ESA TM. ESA Publications, ESTEC, Noordwijk, the Netherlands. Hanssen, R.F. 2001. Data Interpretation and Error Analysis, Remote Sensing and Digital Image Processing, 328 pp. Springer Netherlands, Dordrecht. https://doi.org/10.1007/0-306-47633-9_2 Hsieh, S.H., 1970. Geology and gravity anomalies of the Pingtung Plain, Taiwan. Proc. Geol. Soc. China 13, 76–89. Hsieh, S.-H., 1972. Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the Coastal Plain of southwestern Taiwan. Petrol. Geol.Taiwan 10, 323–338. Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., Chen, H.-Y., 2009. Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics 479, 4–18. https://doi.org/10.1016/j.tecto.2008.11.016 Hu, J.-C., Hou, C.-S., Shen, L.-C., Chan, Y.-C., Chen, R.-F., Huang, C., Rau, R.-J., Chen, K.H.-H., Lin, C.-W., Huang, M.-H., Nien, P.-F., 2007. Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. J. Asian Earth Sci. 31, 287–302. https://doi.org/10.1016/j.jseaes.2006.07.020 Huang, M.-H., Hu, J.-C., Ching, K.-E., Rau, R.-J., Hsieh, C.-S., Pathier, E., Fruneau, B., Deffontaines, B., 2009. Active deformation of Tainan tableland of southwestern Taiwan based on geodetic measurements and SAR interferometry. Tectonophysics 466, 322–334. https://doi.org/10.1016/j.tecto.2007.11.020 Huang, M.-H., Tung, H., Fielding, E.J., Huang, H.-H., Liang, C., Huang, C., Hu, J.-C., 2016. Multiple fault slip triggered above the 2016 Mw 6.4 Mei-Nong earthquake in Taiwan. Geophys. Res. Lett. 43, 7459–7467. https://doi.org/10.1002/2016GL069351 Huang, S.-T., Yang, K.-M., Hung, J.-H., Wu, J.-C., Ting, H.-H., Mei, W.-W., Hsu, S.-H., Lee, M., 2004. Deformation front development at the northeast margin of the Tainan basin, Tainan–Kaohsiung area, Taiwan. Mar. Geophys. Res. 25, 139–156. https://doi.org/10.1007/s11001-005-0739-z Hudec, M.R., Soto, J.I., 2021. Piercement mechanisms for mobile shales. Basin Res. 33, 2862–2882. https://doi.org/10.1111/bre.12586 Hwang, C., Hsiao, Y.-S., 2003. Orthometric corrections from leveling, gravity, density and elevation data: a case study in Taiwan. J. Geod. 77, 279–291. https://doi.org/10.1007/s00190-003-0325-6 Ings, S.J., Beaumont, C., 2010. Continental margin shale tectonics: Preliminary results from coupled fluid-mechanical models of large-scale delta instability. J. Geol. Soc. 167, 571–582. https://doi.org/10.1144/0016-76492009-052 Kopf, A.J., 2002. Significance of mud volcanism. Rev. Geophys. 40, 2-1-2–52. https://doi.org/10.1029/2000RG000093 Lacombe, O., Angelier, J., Mouthereau, F., Chu, H.-T., Deffontaines, B., Lee, J.-C., Rocher, M., Chen, R.-F., Siame, L., 2004. The Liuchiu Hsu island offshore SW Taiwan: Tectonic versus diapiric anticline development and comparisons with onshore structures. CR Geosci. 336, 815–825. https://doi.org/10.1016/j.crte.2004.02.007 Le Béon, M., Huang, M.-H., Suppe, J., Huang, S.-T., Pathier, E., Huang, W.-J., Chen, C.-L., Fruneau, B., Baize, S., Ching, K.-E., Hu, J.-C., 2017. Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terr. Atmospheric Ocean. Sci. 28. https://doi.org/10.3319/TAO.2017.03.20.02 Lin, A.T., Yao, B., Hsu, S.-K., Liu, C.-S., Huang, C.-Y., 2009. Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics 479, 28–42. https://doi.org/10.1016/j.tecto.2008.11.004 Liu, C.-S., Deffontaines, B., Lu, C.-Y., Lallemand, S., 2004. Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan. Mar. Geophys. Res. 25, 123–137. https://doi.org/10.1007/s11001-005-0738-0 Liu, C.-S., Huang, I.L., Teng, L.S., 1997. Structural features off southwestern Taiwan. Mar. Geol. 137, 305–319. https://doi.org/10.1016/S0025-3227(96)00093-X Lu, C.Y., Jeng, F.S., Chang, K.J., Jian, W.T., 1998. Impact of basement high on the structure and kinematics of the western Taiwan thrust wedge: Insights from sandbox models. Terr. Atmospheric Ocean. Sci. 9, 533. https://doi.org/10.3319/TAO.1998.9.3.533(TAICRUST) Makhnenko, R.Y., Podladchikov, Y.Y., 2018. Experimental poroviscoelasticity of common sedimentary rocks. J. Geophys. Res.: Solid Earth 123, 7586–7603. https://doi.org/10.1029/2018JB015685 Malavieille, J., Dominguez, S., Lu, C.-Y., Chen, C.-T., Konstantinovskaya, E., 2021. Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geol. Mag. 158, 84–103. https://doi.org/10.1017/S0016756819000645 Morency, C., Huismans, R.S., Beaumont, C., Fullsack, P., 2007. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability. J. Geophys. Res.: Solid Earth 112, B10407. https://doi.org/10.1029/2006JB004701 Mourgues, R., Lecomte, E., Vendeville, B., Raillard, S., 2009. An experimental investigation of gravity-driven shale tectonics in progradational delta. Tectonophysics 474, 643–656. https://doi.org/10.1016/j.tecto.2009.05.003 Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., Brusset, S., 2001. Deformation history of the southwestern Taiwan foreland thrust belt: Insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics 333, 293–322. https://doi.org/10.1016/S0040-1951(00)00280-8 Pan, Y.-S., 1968. Interpretation and seismic coordination of the bouguer gravity anomalies obtained in southwestern Taiwan. Petrol. Geol. Taiwan 6, 197–207. Rau, R.-J., Wen, Y.-Y., Ching, K.-E., Hsieh, M.-C., Lo, Y.-T., Chiu, C.-Y., Hashimoto, M., 2022. Origin of coseismic anelastic deformation during the 2016 Mw 6.4 Meinong Earthquake, Taiwan. Tectonophysics 836, 229428. https://doi.org/10.1016/j.tecto.2022.229428 Rosen, P.A., Gurrola, E., Sacco, G.F., Zebker, H., 2012. The InSAR scientific computing environment. EUSAR 2012; 9th European Conference on Synthetic Aperture Radar. 730–733. Ruh, J.B., Gerya, T., Burg, J.-P., 2014. 3D effects of strain vs. velocity weakening on deformation patterns in accretionary wedges. Tectonophysics 615–616, 122–141. https://doi.org/10.1016/j.tecto.2014.01.003 Shyu, J.B.H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., Cheng, C.-T., 2016. A new on-land seismogenic structure source database from the Taiwan Earthquake Model (TEM) Project for seismic hazard analysis of Taiwan. Terr. Atmospheric Ocean. Sci. 27, 311. https://doi.org/10.3319/TAO.2015.11.27.02(TEM) Shyu, J.B.H., Yin, Y.-H., Chen, C.-H., Chuang, Y.-R., Liu, S.-C., 2020. Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr. Atmospheric Ocean. Sci. 31, 469–478. https://doi.org/10.3319/TAO.2020.06.08.01 Soto, J.I., Heidari, M., Hudec, M.R., 2021. Proposal for a mechanical model of mobile shales. Sci. Rep. 11, 23785. https://doi.org/10.1038/s41598-021-02868-x Steer, P., Simoes, M., Cattin, R., Shyu, J.B.H., 2014. Erosion influences the seismicity of active thrust faults. Nat. Commun. 5, 5564. https://doi.org/10.1038/ncomms6564 Sun, S.-C., 1964. Photogeologic study of the Tainan-Kaohsiung coastal plain area, Taiwan. Petrol. Geol. Taiwan 3, 39–51. Sun, S.-C., Liu, C.-S., 1993. Mud Diapirs And Submarine Channel Deposits In Offshore Kaohsiung-Hengchun, Southwest Taiwan. Petroleum Geology of Taiwan 28, 1–14. Tsukahara, K., Takada, Y., 2018. Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS. Earth Planets Space 70, 52. https://doi.org/10.1186/s40623-018-0816-6 Turcotte, D.L., Schubert, G., 2014. Geodynamics, Third edition. ed. Cambridge University Press, Cambridge, United Kingdom. Wan, Z., Zhang, J., Lin, G., Zhong, S., Li, Q., Wei, J., Sun, Y., 2021. Formation mechanism of mud volcanoes/mud diapirs based on physical simulation. Geofluids 2021, e5531957. https://doi.org/10.1155/2021/5531957 Wu, J., McClay, K., de Vera, J., 2020. Growth of triangle zone fold-thrusts within the NW Borneo deep-water fold belt, offshore Sabah, southern South China Sea. Geosphere 16, 329–356. https://doi.org/10.1130/GES02106.1 Yassir, N., 2003. The role of shear stress in mobilizing deep-seated mud volcanoes: geological and geomechanical evidence from Trinidad and Taiwan. Geol. Soc. Lond. spec. publ. 216, 461–474. https://doi.org/10.1144/GSL.SP.2003.216.01.30 Yu, S.-B., Chen, H.-Y., Kuo, L.-C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics 274, 41–59. https://doi.org/10.1016/S0040-1951(96)00297-1 Yunjun, Z., Fattahi, H., Amelung, F., 2019. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 133, 104331. https://doi.org/10.1016/j.cageo.2019.104331 何宛芸,2006,利用三維個別元素法模擬台灣西南部之地殼變形之研究,國立臺灣大學地質科學研究所學位論文,共116頁。 劉婉姿,2020,檢驗SBAS-InSAR於2016年美濃地震震後變形分析,臺灣大學地理環境資源學研究所學位論文,共162頁。 劉彥求、林啟文,2021,車瓜林斷層,經濟部中央地質調查所彙刊 34,34–40。 吳樂群、陳華玟、顏一勤,2011,朴子、佳里、臺南., 五萬分之一臺灣地質圖幅及說明書,scale 1:5000,經濟部中央地質調查所。 吳育雅,2013,應用持久性散射體差分干涉法研究台灣西南部活動變形. 博士論文, 臺灣大學地質科學研究所學位論文,共120頁。 孫立威,2018,利用重力資料探討台灣西南部構造,國立中央大學地球科學研究所碩士學位論文,共73頁。 張徽正、林啟文、陳勉銘、盧詩丁,1998,臺灣活動斷層概論,經濟部中央地質調查所特刊 10,共103頁。 彭國瑛,2021,台灣西南褶衝帶增積岩體泥貫入體變形構造分析,臺灣大學海洋研究所碩士學位論文,共72頁。 景國恩、胡植慶、陳宏宇、張午龍,2020a,斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估 (總報告書),經濟部中央地質調查所。 景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡,2020b,斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估 (總報告書). 經濟部中央地質調查所。 李秋賢,2016,利用GPS觀測資料及塊體模型來探討台灣的地殼變形,國立中央大學地球科學研究所碩士學位論文,共180頁。 李芳儀,2017,以數值模擬討論台灣西南地區地表變形和斷層發育,臺灣大學海洋研究所學位論文,共164頁。 林啟文,2013,旗山,五萬分之一臺灣地質圖幅及說明書,scale 1:50000,經濟部中央地質調查所。 林啟文、洪國騰,2012,美濃,五萬分之一臺灣地質圖幅及說明書,scale 1:50000,經濟部中央地質調查所。 林啟文、陳文山、劉彥求、陳柏村,2009,旗山斷層,經濟部地質調查所特刊,臺灣東部與南部的活動斷層 23,111–132。 温大任、莫慧偵、陳怡如、楊志成、傅式齊、蕭良堅、邱仲信、黃旭燦,2016, 台灣西南地區天然氣資源調查及評估,台灣中油公司探採研究所。 石再添、張瑞津、鄧國雄、石慶得、楊貴三、許民陽,1984,臺灣西部與南部活斷層的地形學研究,國立臺灣師範大學地理研究所地理研究報告 10,49–94。 石再添、楊貴三、張瑞津,1993,臺灣活斷層的地形學研究概要,地工技術 44, 26–51。 翁淑卿,2002,台南台地暨鄰近地區之台南層及其構造運動, 國立中央大學應用地質研究所碩士學位論文,共107頁。 胡植慶、劉啟清、景國恩、鄭錦桐、陳宏宇、郭明錦、饒瑞鈞、張午龍、邵國士、 林柏伸、顏銀桐、謝銘哲、李易叡、黃鐘、傅慶州,2016,斷層活動性觀測研究第三階段-斷層整合性觀測與潛勢分析(4/4),經濟部中央地質調查所。 莊惠如,2006,台灣西南海域泥貫入體分佈與構造活動之關係,臺灣大學海洋研究所碩士學位論文,共113頁。 薛雅駿,2022,萬丹鯉魚山泥火山區域重力加密測量結果,國立中央大學應用地質研究所碩士學位論文,共81頁。 趙荃敏,2016,利用大地測量及PSInSAR技術探討鳳山斷層之運動特性. 國立成功大學的碩士論文. 國立成功大學. 邱奕維、藺于鈞、黃文正、顏一勤、波玫琳、李元希,2019,臺灣西南部中寮隧道北端口旗山斷層帶構造特性研究,經濟部中央地質調查所特刊 34,83–100。 郭鶯萍,2017,探討泥岩區對臺灣西南部褶皺逆衝帶的高異常變形量之影響,臺灣大學地質科學研究所碩士學位論文。 鄭宏祺,2000,臺灣西南部台南至屏東地區地質構造之研究,國立中央大學應地質研究所碩士學位論文,共92頁。 陳勇昇,2015,藉由大地測量資料探討龍船斷層與旗山斷層之間震變形特性,國立成功大學測量及空間資訊學系研究所碩士學位論文,共79頁。 陳文山,2016,台灣地質概論,臺灣地質學會。 陳文山、楊志成、楊小青、吳樂群、林啟文、張徽正、石瑞銓、林偉雄、李元希、石同生、盧詩丁,2004,從構造地形探討嘉南地區活動構造及構造分區,經濟部中央地質調查所彙刊 第十三號,3–77。 陳文山、游能悌,2012,重要活動斷層帶構造特性調查研究計劃斷層活動特性分析與評估(2/4),經濟部中央地質調查所。 陳文山、游能悌、松多信尚、楊小青,2008,地震地質與地變動潛勢分析計畫-斷層長期滑移速率與再現周期研究 (2/4),經濟部中央地質調查所報告96-10,經濟部中央地質調查所。 陳文山、游能悌、松多信尚、楊小青,2007,地震地質與地變動潛勢分析計畫-斷層長期滑移速率與再現周期研究 (1/4),經濟部中央地質調查所報告96-10,經濟部中央地質調查所。 陳松春,2013,臺灣西南海域上部高屏斜坡泥貫入體及泥火山之分布及相關海床特徵,國立中央大學地球科學系研究所博士學位論文,共116頁。 陳華玟、謝凱旋、何信昌,1998,高雄,五萬分之一臺灣地質圖幅及說明書,scale 1:5000,經濟部中央地質調查所。 饒瑞鈞、胡植慶、洪日豪、余致義,2006,地震地質調查及活動斷層資料庫建置-活動斷層 監測系統計畫(5/5),經濟部中央地質調查所研究報告95-10號。 黃旭燦,2003,台灣中南部褶皺逆衝斷層帶地質構造特徵分析,國立中央大學地球科學系研究所博士學位論文,共129頁。 黃鑑水、劉桓吉,1990,琉球嶼,五萬分之一臺灣地質圖幅及說明書,scale 1:50000,經濟部中央地質調查所。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85456 | - |
| dc.description.abstract | 台灣西南部目前正由隱沒增積岩體轉為碰撞造山,並於上新世於造山前緣沉積厚層泥岩。泥岩的力學性質造成了此處發生了顯著震間潛移的現象,並且造成了地表結構物的損壞。因此本研究希望透過地表變形的監測與數值方法來了解其變形行為與形成機制,提供未來高地表變形區域的防災與減災參考。 本研究第一部分使用小基線演算法分析 Sentinel-1 C-band雷達2018-2021升軌與降軌影像之時間序列,配合GPS連續站觀測資料,對InSAR的平均速度場做擬和校正,最後透過線性逆推將速度場從視衛星方向投影到東西方向與垂直方向。從結果發現在震間相當活躍的構造有:後甲里斷層、中洲斷層、小岡山斷層、右昌斷層與鳳山斷層,而麓山帶內的旗山斷層則受限於雷達反射不佳而無法觀測其震間行為。變形行為上,可以把西南台灣分為三個主要的構造區塊,分別為右昌斷層以北為震間相當活躍的褶皺逆衝帶;右昌斷層以南,則以鳳山斷層為界,以東之屏東平原無明顯構造活動,以西則為活躍的背斜-泥貫入體發育帶。 研究的第二部分使用有限元素法程式DynEarthSol建立二維模型,探討造成泥岩潛變的動力學機制。透過改變泥岩黏滯度、內摩擦角與內聚力等力學性質與地表侵蝕作用觀察其行為,並可以將泥岩變形區分為三種不同的動力學過程:對稱發育、不對稱發育與斷層發育。從結果觀察到,當泥岩之黏滯度足夠低時,則會發育較對稱的的背斜與泥貫入體;當泥岩的尖峰摩擦角足夠低時,則會發育以塑性變形主導較不對稱的背斜褶皺與小規模斷層;而地表作用的影響則反映了高地表侵蝕速率使對稱背斜更容易發育,其波長較長且單一;同時,當地表侵蝕率下降與黏滯度上升,則會在淺部產生覆瓦狀斷層。對應到西南台灣的地表變形行為,從變形波長與速度場資料觀之,高地表侵蝕率的非對稱背斜發育應為最佳解。 | zh_TW |
| dc.description.abstract | In southwestern Taiwan, the orogeny process is changing from trench subduction-related accretionary wedge to plate collision. Owing to the deposition of the thick layer of mudstone in the Pliocene time, the rheology of mudstone results in interseismic creeping. Also, the gradual deformation causes damage to the infrastructure. Thus, we would like to provide the ground deformation observation through the interferometric synthetic aperture radar (InSAR) method and explore the deformation mechanism with the finite element method, which can be applied to disaster mitigation in these fast deforming areas. In the first part of this study, I exploit the small baseline algorithm (SBAS) to analyze the ascending and descending tracks of Sentinel-1 images from 2018 to 2021. Next, I use the cGPS data to constrain the velocity field derived from SBAS-InSAR observation. Finally, the velocity field can be projected back to the east-west and up-dip direction from the line of sight direction. From the result, some structures are still active in the interseismic time, such as Hochiali fault, Chongchou fault, Hsiaokangshan fault, Yochang Fault, and Fengshan Fault, and some of them are located in the densely populated area. However, we cannot access the interseismic behavior of some faults due to the vegetation, such as Chishan fault. The deformation pattern in southwestern Taiwan can be simply divided into three different regimes by Yochang fault and Fengshan Fault. (1) The north block: it is the active fold-and-thrust belt. (2) the southeast block: it is relatively inactive, and is covered by the thick layer of sediment brought by the Kaoping river; (3) the southwest block: it is left-laterally moving with respect to the southeast block, and there are many active anticline-diapirs in this region. In the second part of this study, I design a 2D numerical model with finite element code, Dynearthsol, to explore the dynamic process of mudstone creeping. By exploring the mechanical property of mudstones, like the viscosity, internal friction angle and cohesion, and the surface diffusion coefficient, we can classify mudstone deformation into three different mechanisms: symmetrical growing, asymmetrical growing, and imbricate thrusting. When the viscosity of mudstone is low enough, the model is prone to grow symmetry diapir. Since the viscosity of mudstone increases, the low friction angle layer plays an important role in the formation of diapirs, and this type of diapir is more or less asymmetry. It is believed that the decreasing of friction angle is related to the high-pressure zone which is a common phenomenon in mudstone areas. On the other hand, models with high viscosity and high friction angle grow only one dominant thrust fault. In the surface process model, if the erosion rate is high, the removal of the shallow strata and deposition of sediment at the low-land area will promote the diapir to grow, while the low erosion model will generate the imbrication of the thrust fault. If we make the erosion rate twice as higher as the deposition rate, a single diapir is able to move closer to the ground surface and the propagation rate of the deformation front will be suppressed. Comparing the first and second parts of this study, we can simply conclude that the low friction and high viscosity model is a good solution to the on-land structure nowadays. Relatively, the low viscosity model could explain the off-shore diapir and the structure profile. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:52Z (GMT). No. of bitstreams: 1 U0001-1307202223550800.pdf: 13893232 bytes, checksum: f5642cfa591cc8800533db35d0c634d1 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii 目錄 v 圖目 vii 表目 xii 第1章 研究動機 1 第2章 地質背景與文獻回顧 5 2.1 地體構造 5 2.2 地質單元與活動構造 5 2.2.1 地層 7 2.2.2 活動構造 10 2.3 震測與構造平衡剖面 13 2.4 泥貫入體 (Mud diapirs)與泥火山 21 2.5 重力觀測 22 第3章 研究方法 28 3.1 合成孔徑雷達 28 3.2 雷達干涉與地表變形 31 3.3 小基線演算法 34 3.3.1 原理 34 3.3.2 處理流程 36 3.4 地表變形修正 39 3.5 有限元素法與岩石力學模型 40 3.6 應變弱化 45 3.7 模型地表作用 46 3.8 二維重力模擬 47 第4章 研究成果 49 4.1 小基線時間序列 49 4.1.1 衛星影像 49 4.1.2 速度剖面分析 63 4.2 有限元素法模擬 69 4.2.1 邊界條件模擬 72 4.2.2 岩石力學參數模擬 74 4.2.3 彈性模數測試 77 4.2.4 模型地表作用 79 第5章 討論 83 5.1 構造活動度與大地構造特性 83 5.2 模型構造對比 85 5.3 模型地表作用對模型演化的影響 91 5.4 誤差討論與模型限制 94 5.4.1 長期縮短量與短期變形 94 5.4.2 數值模型的限制 94 第6章 結論 95 第7章 參考資料 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | InSAR | zh_TW |
| dc.subject | 泥貫入體 | zh_TW |
| dc.subject | 西南台灣 | zh_TW |
| dc.subject | 地表變形 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | InSAR | en |
| dc.subject | Mud diapir | en |
| dc.subject | Surface Deformation | en |
| dc.subject | Southwestern Taiwan | en |
| dc.subject | Finite element | en |
| dc.title | 利用合成孔徑干涉雷達與數值模擬分析2018-2021台灣西南部震間變形與構造演化機制 | zh_TW |
| dc.title | Using InSAR and Numerical Method to Characterize the Active Deformation and Structural Evolution in Southwestern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 譚諤(Eh Tan) | |
| dc.contributor.oralexamcommittee | 王昱(Yu Wang),許雅儒(Ya-Ju Hsu),謝嘉聲(Chia-Sheng Hsieh) | |
| dc.subject.keyword | InSAR,有限元素法,西南台灣,地表變形,泥貫入體, | zh_TW |
| dc.subject.keyword | InSAR,Finite element,Southwestern Taiwan,Surface Deformation,Mud diapir, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU202201458 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-20 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1307202223550800.pdf | 13.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
