Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85451
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡忠潤(Chung-Jun Tsai)
dc.contributor.authorChen-Kuan Leeen
dc.contributor.author李宸寬zh_TW
dc.date.accessioned2023-03-19T23:16:47Z-
dc.date.copyright2022-07-22
dc.date.issued2022
dc.date.submitted2022-07-18
dc.identifier.citation[1] K. A. Brakke. The motion of a surface by its mean curvature, volume 20 of Mathematical Notes. Princeton University Press, Princeton, N.J., 1978. [2] W. Ding and Y. Yuan. Resolving the singularities of the minimal Hopf cones. J. Partial Differential Equations, 19(3):218–231, 2006. [3] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. [4] R. S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geometry, 17(2):255–306, 1982. [5] R. Harvey and H. B. Lawson, Jr. Calibrated geometries. Acta Math., 148:47–157, 1982. [6] M. W. Hirsch, S. Smale, and R. L. Devaney. Differential equations, dynamical systems, and an introduction to chaos. Elsevier/Academic Press, Amsterdam, third edition, 2013. [7] G. Huisken. Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20(1):237–266, 1984. [8] G. Huisken. Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom., 31(1):285–299, 1990. [9] G. R. Lawlor. A sufficient criterion for a cone to be area-minimizing. Mem. Amer. Math. Soc., 91(446):vi+111, 1991. [10] H. B. Lawson, Jr. and R. Osserman. Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta Math., 139(1-2):1–17, 1977. [11] C. B. Morrey, Jr. Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, 1966. [12] X. Xu, L. Yang, and Y. Zhang. New area-minimizing Lawson-Osserman cones. Adv. Math., 330:739–762, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85451-
dc.description.abstract在這篇論文中,我們首先得到基於羅森-歐斯曼錐構造的均曲流自相似解必須滿足的等式,並證明了自擴張解的存在性。主要的關鍵是利用羅森-歐斯曼錐的對稱性將偏微分方程轉化為常微分方程組,並研究這種近似於自治系統的常微分方程組。特別地,我們發現從狄利克雷問題的觀點來看,我們構造的自擴張解具唯一性。zh_TW
dc.description.abstractIn this thesis, we derived the equation of self-similar solutions to mean curvature flow based on the Lawson-Osserman cone and proved the existence of self-expander. The main point is to use the symmetry to transform the PDE into a system of ODEs and analyze such analogous autonomous system. In particular, the self-expander is unique form the viewpoint of Dirichlet problem.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:47Z (GMT). No. of bitstreams: 1
U0001-0806202210173900.pdf: 1366535 bytes, checksum: f59655475c6aa05f85724d209b328236 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents Page Verification Letter from the Oral Examination Committee i Acknowledgements ii 摘要 iii Abstract iv Contents v 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background materials . . . . . . . . . . . . . . . . . . . . . . . . 2 3 The desired ODE of self-similar solutions . . . . . . . . . . . . . . 4 4 An analogous autonomous system . . . . . . . . . . . . . . . . . . 6 5 The existence of self-expander . . . . . . . . . . . . . . . . . . . . 9 6 The uniqueness of self-expander from the perspective of Dirichlet problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7 The behavior of the self-expander at infinity . . . . . . . . . . . . 15 References 18 Appendix — A brief view from power series expansion 19
dc.language.isoen
dc.subject幾何分析zh_TW
dc.subject狄利克雷問題zh_TW
dc.subject羅森-歐斯曼錐zh_TW
dc.subject自相似解zh_TW
dc.subject高餘維均曲流zh_TW
dc.subjectSelf-Similar Solutionen
dc.subjectMean Curvature Flow in Higher Codimensionsen
dc.subjectGeometric Analysisen
dc.subjectDirichlet Problemen
dc.subjectLawson-Osserman Coneen
dc.title基於羅森-歐斯曼錐構造的均曲流自相似解zh_TW
dc.titleSelf-similar solutions to the mean curvature flow based on the Lawson-Osserman coneen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-4112-5921
dc.contributor.oralexamcommittee崔茂培(Mao-Pei Tsui),鄭日新(Jih-Hsin Cheng)
dc.subject.keyword幾何分析,高餘維均曲流,自相似解,羅森-歐斯曼錐,狄利克雷問題,zh_TW
dc.subject.keywordGeometric Analysis,Mean Curvature Flow in Higher Codimensions,Self-Similar Solution,Lawson-Osserman Cone,Dirichlet Problem,en
dc.relation.page22
dc.identifier.doi10.6342/NTU202200888
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
dc.date.embargo-lift2022-07-22-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-0806202210173900.pdf1.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved