Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85435
標題: 法人說明會語調對未來盈餘反應係數之影響
The effects of conference call tone on Future Earnings Response Coefficient
作者: Hung-Wei Chiang
江泓葦
指導教授: 林嬋娟(Chan-Jane Lin)
關鍵字: 未來盈餘反應係數,法人說明會,情感分類,FinBERT,文本分析,自然語言處理,
FERC,Earnings Conference Call,Sentiment Classification,FinBERT,Textual Analysis,Natural Language Processing (NLP),
出版年 : 2022
學位: 碩士
摘要: 本論文利用未來盈餘反應係數 (future earnings response coefficient, FERC) 探討法人說明會語調是否能夠提供增額資訊,以協助投資人修正對於未來盈餘的預期,進而反應在股價上。在語調衡量方面,本論文使用FinBERT 模型及Loughran and Mcdonald (2011)編製的字典來衡量法說會語調。為比較兩個方法,本論文先進行情感分類的測試,從分類測試的結果可以發現FinBERT 模型不僅整體表現較佳,在各個情感類別上的表現也優於字典法。在實證方面,本論文發現越正向的法人說明會語調具有更高的未來反應係數,顯示正向的語調能夠提供較多關於未來盈餘的資訊,此結果與過往研究一致,顯示法人說明會語調確實具有資訊內涵。本論文並未發現法人說明會不同階段的語調對未來盈餘反應係數有明顯差異,顯示不同階段語調所提供有關未來盈餘資訊量差異很小。另外,本論文發現透過FinBERT模型衡量的語調在實證上較顯著,顯示FinBERT模型不僅能更準確地衡量文本情緒,且更適合用於財經及會計方面的情感分析研究。
This paper uses future earnings response coefficient (FERC) to test whether the tone of the conference calls can assist investors in predicting future earnings and reflect the expectations in stock prices. To accurately measure the tone, this paper utilizes the state-of-the-art natural language processing (NLP) algorithm - FinBERT model, and uses the Loughran and Mcdonald (2011) word lists as a benchmark. To check the performance of them, this paper does a classification task first. The results show that the FinBERT model not only achieves better overall performance but also surpasses the word list method in predicting sentiment for each sentiment class. In terms of empirical results, this paper finds weak evidence that firms with more positive tone will have higher FERC, suggesting that positive tone can provide more information and better assist investors in predicting future performance. The findings are consistent with the results in previous research that the linguistic features in conference calls can provide additional information and support the findings that positive tone can reduce uncertainty of firm’s future value. This paper does not find significant FERC difference between the tone in discussion section and the tone in presentation section. The results may suggest that the tone in different section provide almost same amount of information in predicting future earnings. Notably, the paper demonstrates that the tone measured by the FinBERT model gets greater significance than the tone measured by the word list method, suggesting that the FinBERT model not only gauges the sentiment more accurately but is also more suitable for sentiment analysis in financial and accounting research.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85435
DOI: 10.6342/NTU202201498
全文授權: 同意授權(全球公開)
電子全文公開日期: 2022-07-27
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
U0001-1607202214153000.pdf1.45 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved