請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85431
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施明哲 | zh_TW |
dc.contributor.advisor | Ming-Che Shih | en |
dc.contributor.author | 曾瓊瑜 | zh_TW |
dc.contributor.author | Cyong-Yu Zeng | en |
dc.date.accessioned | 2023-03-19T23:16:31Z | - |
dc.date.available | 2023-12-26 | - |
dc.date.copyright | 2022-07-22 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Allen, M.D., Yamasaki, K., Ohme Takagi, M., Tateno, M., and Suzuki, M. (1998). A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal 17, 5484-5496. Bailey Serres, J., and Voesenek, L.A.C.J. (2008). Flooding Stress: Acclimations and Genetic Diversity. Annual Review of Plant Biology 59, 313-339. Bailey Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S., and Mackill, D. (2010). Submergence Tolerant Rice: SUB1’s Journey from Landrace to Modern Cultivar. Rice 3, 138-147. Bailey Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A.C.J., and Van Dongen, J.T. (2012). Making sense of low oxygen sensing. Trends in Plant Science 17, 129-138. Bui, L.T., Giuntoli, B., Kosmacz, M., Parlanti, S., and Licausi, F. (2015). Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Science 236, 37-43. Cheong, Y.H., Moon, B.C., Kim, J.K., Kim, C.Y., Kim, M.C., Kim, I.H., Park, C.Y., Kim, J.C., Park, B.O., Koo, S.C., Yoon, H.W., Chung, W.S., Lim, C.O., Lee, S.Y., and Cho, M.J. (2003). BWMK1, a Rice Mitogen-Activated Protein Kinase, Locates in the Nucleus and Mediates Pathogenesis-Related Gene Expression by Activation of a Transcription Factor. Plant Physiology 132, 1961-1972. Cutcliffe, J.W., Hellmann, E., Heyl, A., and Rashotte, A.M. (2011). CRFs form protein–protein interactions with each other and with members of the cytokinin signalling pathway in Arabidopsis via the CRF domain. Journal of Experimental Botany 62, 4995-5002. Dissmeyer, N. (2019). Conditional Protein Function via N-Degron Pathway–Mediated Proteostasis in Stress Physiology. Annual Review of Plant Biology 70, 83-117. Fukao, T., and Bailey Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences 105, 16814-16819. Fukao, T., Yeung, E., and Bailey Serres, J. (2011). The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice. The Plant Cell 23, 412-427. Fukao, T., Xu, K., Ronald, P.C., and Bailey Serres, J. (2006). A Variable Cluster of Ethylene Response Factor–Like Genes Regulates Metabolic and Developmental Acclimation Responses to Submergence in Rice. The Plant Cell 18, 2021-2034. Gasch, P., Fundinger, M., Müller, J.T., Lee, T., Bailey Serres, J., and Mustroph, A. (2016). Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. The Plant Cell 28, 160-180. Gibbs, D.J., Conde, J.V., Berckhan, S., Prasad, G., Mendiondo, G.M., and Holdsworth, M.J. (2015). Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants. Plant Physiology 169, 23-31. Gibbs, D.J., Lee, S.C., Md Isa, N., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey Serres, J., and Holdsworth, M.J. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415-418. Hao, D., Ohme Takagi, M., and Sarai, A. (1998). Unique Mode of GCC Box Recognition by the DNA-binding Domain of Ethylene-responsive Element-binding Factor (ERF Domain) in Plant. Journal of Biological Chemistry 273, 26857-26861. Hartman, S., Liu, Z., Van Veen, H., Vicente, J., Reinen, E., Martopawiro, S., Zhang, H., Van Dongen, N., Bosman, F., Bassel, G.W., Visser, E.J.W., Bailey Serres, J., Theodoulou, F.L., Hebelstrup, K.H., Gibbs, D.J., Holdsworth, M.J., Sasidharan, R., and Voesenek, L.A.C.J. (2019). Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nature Communications 10. Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030. Hebelstrup, K.H., Van Zanten, M., Mandon, J., Voesenek, L.A.C.J., Harren, F.J.M., Cristescu, S.M., Møller, I.M., and Mur, L.A.J. (2012). Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. Journal of Experimental Botany 63, 5581-5591. Hinz, M., Wilson, I.W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E.S., Sauter, M., and Dolferus, R. (2010). Arabidopsis RAP2.2: An Ethylene Response Transcription Factor That Is Important for Hypoxia Survival. Plant Physiology 153, 757-772. Hunt, P., Klok, E., Trevaskis, B., Watts, R., Ellis, M., Peacock, W., and Dennis, E. (2002). Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 99, 17197-17202. Igamberdiev, A.U. (2004). Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. Journal of Experimental Botany 55, 2473-2482. Kollist, H., Zandalinas, S.I., Sengupta, S., Nuhkat, M., Kangasjärvi, J., and Mittler, R. (2019). Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends in Plant Science 24, 25-37. Lee, S.Y., Hwang, E.Y., Seok, H.Y., Tarte, V.N., Jeong, M.S., Jang, S.B., and Moon, Y.H. (2015). Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Reports 34, 223-231. Licausi, F., Van Dongen, J.T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P., and Perata, P. (2010). HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. The Plant Journal 62, 302-315. Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L., Perata, P., and van Dongen, J.T. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419-U177. Lin, C.C., Chao, Y.T., Chen, W.C., Ho, H.Y., Chou, M.Y., Li, Y.R., Wu, Y.L., Yang, H.A., Hsieh, H., Lin, C.S., Wu, F.H., Chou, S.J., Jen, H.C., Huang, Y.H., Irene, D., Wu, W.J., Wu, J.L., Gibbs, D.J., Ho, M.C., and Shih, M.C. (2019). Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proceedings of the National Academy of Sciences 116, 3300-3309. Loreti, E., Poggi, A., Novi, G., Alpi, A., and Perata, P. (2005). A Genome-Wide Analysis of the Effects of Sucrose on Gene Expression in Arabidopsis Seedlings under Anoxia. Plant Physiology 137, 1130-1138. Manac'h Little, N., Igamberdiev, A.U., and Hill, R.D. (2005). Hemoglobin expression affects ethylene production in maize cell cultures. Plant Physiology and Biochemistry 43, 485-489. Ohwaki, Y., Kawagishi Kobayashi, M., Wakasa, K., Fujihara, S., and Yoneyama, T. (2005). Induction of Class-1 Non-symbiotic Hemoglobin Genes by Nitrate, Nitrite and Nitric Oxide in Cultured Rice Cells. Plant and Cell Physiology 46, 324-331. Papdi, C., Pérez Salamó, I., Joseph, M.P., Giuntoli, B., Bögre, L., Koncz, C., and Szabados, L. (2015). The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. The Plant Journal 82, 772-784. Peña Castro, J.M., Van Zanten, M., Lee, S.C., Patel, M.R., Voesenek, L.A.J.C., Fukao, T., and Bailey Serres, J. (2011). Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. The Plant Journal 67, 434-446. Ross, E.J., Stone, J.M., Elowsky, C.G., Arredondo-Peter, R., Klucas, R.V., and Sarath, G. (2004). Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. Journal of experimental botany 55, 1721-1731. Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi Shinozaki, K. (2002). DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression. Biochemical and Biophysical Research Communications 290, 998-1009. Serra, T.S., Figueiredo, D.D., Cordeiro, A.M., Almeida, D.M., Lourenço, T., Abreu, I.A., Sebastián, A., Fernandes, L., Contreras Moreira, B., Oliveira, M.M., and Saibo, N.J.M. (2013). OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Molecular Biology 82, 439-455. Singh, P., and Sinha, A.K. (2016). A Positive Feedback Loop Governed by SUB1A1 Interaction with MITOGEN-ACTIVATED PROTEIN KINASE3 Imparts Submergence Tolerance in Rice. The Plant Cell 28, 1127-1143. Tamang, B., and Fukao, T. (2015). Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence. International Journal of Molecular Sciences 16, 30164-30180. Trevaskis, B., Watts, R.A., Andersson, C.R., Llewellyn, D.J., Hargrove, M.S., Olson, J.S., Dennis, E.S., and Peacock, W.J. (1997). Two hemoglobin genes in Arabidopsis thaliana : The evolutionary origins of leghemoglobins. Proceedings of the National Academy of Sciences 94, 12230-12234. Vashee, S., Willie, J., and Kodadek, T. (1998). Synergistic activation of transcription by physiologically unrelated transcription factors through cooperative DNA-binding. Biochemical and biophysical research communications 247, 530-535. Veitia, R.A. (2003). A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biological Reviews of the Cambridge Philosophical Society 78, 149-170. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang Rodriguez, R., Heuer, S., Ismail, A.M., Bailey Serres, J., Ronald, P.C., and Mackill, D.J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708. Yang, C.Y., Hsu, F.C., Li, J.P., Wang, N.N., and Shih, M.C. (2011). The AP2/ERF Transcription Factor AtERF73/HRE1 Modulates Ethylene Responses during Hypoxia in Arabidopsis. Plant Physiology 156, 202-212. Zheng, L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research 32, e115-e115. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85431 | - |
dc.description.abstract | 隨著氣候變遷,極端的天氣現象越發嚴重與頻繁,而劇烈降雨所造成的淹水事件會造成植物浸沒於水中,進而影響植物生長與生存。第七類乙烯轉錄因子(The group VII of ethylene response factors, ERFVIIs)可以作為氧氣感應者,其N端保守序列可以作為N-end rule的受質,使其蛋白質在一般環境下不穩定而降解,而在淹水以及低氧環境下,穩定的蛋白質能協調下游基因以降低淹水所造成的傷害。水稻對於淹水環境有著天然耐受性,但只有少數品系在完全浸泡於水中超過2週後能恢復生長。水稻帶有18個ERFVII基因,其中的SUB1A-1作為重要調控因子,只存在於特定品系,可以調控許多代謝反應並抑制植物生長,降低能量負擔。此外,SUB1A-1可以調控ERF66和ERF67表現,可共同促進淹水耐受性。除了SUB1A相關機制外,水稻ERFVIIs對於淹水耐受性的調控是未知的。 本篇報導透過轉錄量分析,發現數個基因(ERF65、ERF70、ERF71與ERF72)持續表現,並且在不同遺傳背景下亦然,代表其功能可能是保守並且與淹水時快速反應有關。透過在水稻原生質體暫時表達,ERF65、ERF70和ERF72可以激活ERF67啟動子,而ERF65/70/72與SUB1A的共表達可以促進ERF67的轉錄,多個ERFVII蛋白佔據於ERF67啟動子上的GCC box可能是造成共協調的主因。有趣的是,雖然SUB1A-1與SUB1A-2均可與ERF65/70/72共同激活ERF67表現,但SUB1A-2無法有效誘導內生的ERF67表現,這突顯了SUB1A的磷酸化在調控功能上的重要性。此外,ERFVIIs可以調控非共生血紅蛋白(non-symbiotic hemoglobin, nsHBs)的表現,其作為一氧化氮清除者,在缺氧期間可調節細胞內一氧化氮含量。ERF65、ERF70與ERF71有較高能力促進HB1和HB2表現,ERF72為中等,SUB1A-1與ERF67則有較低能力促進HB2表現,而當ERF67與ERF71共表達時,可能產生競爭關係而微調HB2表現量。 總之,我們提出了一條ERFVII的調控路徑,有助於水稻對於淹水的基礎耐受性;而在耐淹水品系中,SUB1A的參與可以增加對ERF67的調控,進而延長浸沒的生存時間。 | zh_TW |
dc.description.abstract | With climate change, extreme weather phenomena are more severe and frequent. Flooding events by severe rainfall cause plants to be submerged in water, which will affect the growth and survival of plants. The group VII of ethylene response factors (ERFVIIs) are the substrates of N-end rule which make their protein unstable under normal oxygen conditions. Under submergence and low oxygen, the stabilized ERFVII proteins could coordinately regulate downstream genes to reduce the damages caused by flooding. Rice (Oryza sativa) is naturally tolerant to flooding, but only a few cultivars can survive after fully submerged in water for a prolonged period of time. There are eighteen ERFVIIs in rice. SUB1A-1 that only exists in specific cultivars is a master regulator to coordinate metabolic responses and repress plant growth during submergence which can reduce energy burden. In addition, SUB1A-1 could regulate the expression of ERF66 and ERF67, which could promote flooding tolerance. Except for SUB1A-dependent mechanisms, the regulation of ERFVIIs in rice for flooding tolerance is unknown. In this study, several ERFVII genes including ERF65, ERF70, ERF71 and ERF72 were found constitutively expressed in different genetic backgrounds via transcription analysis, indicating their function might be conserved and associated with rapid response to flooding. Through transient expressions in rice protoplasts, ERF65, ERF70 and ERF72 could activate the promoter of ERF67. Co-expression of ERF65/70/72 with SUB1A could enhance the transcript of ERF67. The occupancy of GCC boxes on the ERF67 promoter by multiple ERFVII proteins might be the main reason for synergistic transcriptional activation. Interestingly, SUB1A-1 and SUB1A-2 respectively with ERF65/70/72 could co-activate the expression of the ERF67-Luc reporter gene, but the group of SUB1A-2 failed to efficiently induce the endogenous ERF67 expression. It highlighted the importance of the phosphorylation of SUB1A for the regulatory function. In addition, ERFVIIs could regulate the expression of non-symbiotic hemoglobins (nsHBs), as nitric oxide (NO) scavengers to modulate NO content during hypoxia. ERF65, ERF70 and ERF71 had better capabilities to activate the expression of HB1 and HB2. SUB1A-1 and ERF67 showed low abilities to induce the expression of HB2. Co-expression of ERF67 and ERF71 might compete for the binding sites and fine-tune the expression of HB2. In summary, we proposed a regulatory pathway of ERFVIIs which contributed to the basal tolerance of flooding for rice. In tolerant cultivars, the involvement of SUB1A-1 would enhance the expression of ERF67, which would prolong the survival during submergence. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:31Z (GMT). No. of bitstreams: 1 U0001-0707202214440600.pdf: 2113834 bytes, checksum: cc86dc9c812d336f7d6bee95039856d3 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 中文摘要 iii Abstract v List of tables ix List of figures x Chapter 1: Background and knowledge 1 1.1 Flooding is a worldwide stress 1 1.2 Strategies for rice to adopt flood stress 1 1.3 The role of group VII ethylene response factors (ERFVIIs) in flooding stress 2 1.4 The roles of ERFVIIs in rice 4 1.5 The regulation of ERFVIIs on expression of the target genes 5 1.6 The role of non-symbiotic hemoglobin (nsHBs) during hypoxia stress 5 Chapter 2: Material and methods 8 2.1 Growth Conditions and submergence treatment 8 2.2 RNA extraction and reverse transcription 8 2.3 Quantitative real-time polymerase chain reaction (qRT-PCR) 10 2.4 Plasmid construction 10 2.5 Protoplast preparation and transformation 11 2.6 Trans-activation assay 12 2.7 Protein expression and purification 12 2.8 Electrophoretic mobility shift assay (EMSA) 13 Chapter 3: Results 14 3.1 ERF65, ERF70, ERF71 and ERF72 had distinct expression patterns under submergence 14 3.2 ERF65, ERF70 and ERF72 could activate the expression of ERF67 14 3.3 ERF65, ERF70 and ERF72 had similar binding sites on the ERF67 promoter 16 3.4 ERF70 and ERF72 could directly bind to the promoter of ERF67 17 3.5 ERFVIIs could regulate the expression of nsHBs. 18 Chapter 4: Discussions 20 Chapter 5: Concluding remarks and future perspectives 24 Chapter 6: Tables and figures 25 References 42 | - |
dc.language.iso | en | - |
dc.title | 水稻ERFVIIs對於淹水反應的功能性分析 | zh_TW |
dc.title | Functional analysis of ERFVIIs in rice under Submergence stress | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 謝明勳;林盈仲 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Hsiun Hsieh;Ying-Chung Lin | en |
dc.subject.keyword | 淹水耐受性,水稻,轉錄調控,乙烯轉錄因子,非共生血紅蛋白, | zh_TW |
dc.subject.keyword | submergence tolerance,rice,transcription regulatory,ethylene response factors,non-symbiotic hemoglobins, | en |
dc.relation.page | 48 | - |
dc.identifier.doi | 10.6342/NTU202201329 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-07-19 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 植物科學研究所 | - |
dc.date.embargo-lift | 2023-08-01 | - |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf | 2.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。