請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85428完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維(Shi-Wei Chu) | |
| dc.contributor.author | Chien-Hsuan Li | en |
| dc.contributor.author | 李荐軒 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:16:29Z | - |
| dc.date.copyright | 2022-07-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-20 | |
| dc.identifier.citation | [1] C. M. Soukoulis and M. Wegener, 'Past achievements and future challenges in the development of three-dimensional photonic metamaterials,' Nature Photonics, vol. 5, no. 9, pp. 523-530, 2011, doi: 10.1038/nphoton.2011.154. [2] Y. Kivshar, 'All-dielectric meta-optics and non-linear nanophotonics,' National Science Review, vol. 5, no. 2, pp. 144-158, 2018, doi: 10.1093/nsr/nwy017. [3] C.-Y. Yang et al., 'Nonradiating Silicon Nanoantenna Metasurfaces as Narrowband Absorbers,' ACS Photonics, vol. 5, no. 7, pp. 2596-2601, 2018, doi: 10.1021/acsphotonics.7b01186. [4] R. Soref, 'The Past, Present, and Future of Silicon Photonics,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678-1687, 2006, doi: 10.1109/jstqe.2006.883151. [5] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, 'Silicon optical modulators,' Nature Photonics, vol. 4, no. 8, pp. 518-526, 2010, doi: 10.1038/nphoton.2010.179. [6] M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, 'Nonlinear silicon photonics,' Journal of Optics, vol. 19, no. 9, p. 093002, 2017, doi: 10.1088/2040-8986/aa7a6d. [7] J. Leuthold, C. Koos, and W. Freude, 'Nonlinear silicon photonics,' Nature Photonics, vol. 4, no. 8, pp. 535-544, 2010, doi: 10.1038/nphoton.2010.185. [8] C. Horvath, D. Bachman, R. Indoe, and V. Van, 'Photothermal nonlinearity and optical bistability in a graphene-silicon waveguide resonator,' Optics Letters, vol. 38, no. 23, pp. 5036-5039, 2013, doi: 10.1364/OL.38.005036. [9] Q. Li, M. Davanço, and K. Srinivasan, 'Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,' Nature Photonics, vol. 10, no. 6, pp. 406-414, 2016, doi: 10.1038/nphoton.2016.64. [10] W. Bogaerts et al., 'Silicon microring resonators,' Laser & Photonics Reviews, vol. 6, no. 1, pp. 47-73, 2012, doi: 10.1002/lpor.201100017. [11] A. H. Atabaki et al., 'Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,' Nature, vol. 556, no. 7701, pp. 349-354, 2018, doi: 10.1038/s41586-018-0028-z. [12] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk'yanchuk, 'Optically resonant dielectric nanostructures,' Science, vol. 354, no. 6314, pp. 846-854, 2016, doi: 10.1126/science.aag2472. [13] I. Staude and J. Schilling, 'Metamaterial-inspired silicon nanophotonics,' Nature Photonics, vol. 11, no. 5, pp. 274-284, 2017, doi: 10.1038/nphoton.2017.39. [14] Y. S. Duh et al., 'Giant photothermal nonlinearity in a single silicon nanostructure,' Nature Communications, vol. 11, no. 1, pp. 4101-4110, 2020, doi: 10.1038/s41467-020-17846-6. [15] T. Zhang et al., 'Anapole mediated giant photothermal nonlinearity in nanostructured silicon,' Nature Communications, vol. 11, no. 1, pp. 3027-3036, 2020, doi: 10.1038/s41467-020-16845-x. [16] G. P. Zograf et al., 'Resonant Nonplasmonic Nanoparticles for Efficient Temperature-Feedback Optical Heating,' Nano Letters, vol. 17, no. 5, pp. 2945-2952, 2017, doi: 10.1021/acs.nanolett.7b00183. [17] J. R. Ferraro, Introductory Raman Spectroscopy. Elsevier, 2003. [18] D. C. Harris, Symmetry and spectroscopy. Dover Pubns, 1989. [19] P. Mishra and K. P. Jain, 'Temperature-dependent Raman scattering studies in nanocrystalline silicon and finite-size effects,' Physical Review B, vol. 62, no. 22, pp. 14790-14795, 2000, doi: 10.1103/PhysRevB.62.14790. [20] Z. Su et al., 'Temperature-dependent Raman scattering of silicon nanowires,' The Journal of Physical Chemistry B, vol. 110, no. 3, pp. 1229-1234, 2006, doi: 10.1021/jp055869o. [21] M. R. Hasan and O. G. Helleso, 'Dielectric optical nanoantennas,' Nanotechnology, vol. 32, no. 20, p. 202001, 2021, doi: 10.1088/1361-6528/abdceb. [22] Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk'yanchuk, 'Directional visible light scattering by silicon nanoparticles,' Nature Communications, vol. 4, no. 1, pp. 1527-1532, 2013, doi: 10.1038/ncomms2538. [23] P. Moitra et al., 'Large-Scale All-Dielectric Metamaterial Perfect Reflectors,' ACS Photonics, vol. 2, no. 6, pp. 692-698, 2015, doi: 10.1021/acsphotonics.5b00148. [24] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, 'Fano resonances in nanoscale structures,' Reviews of Modern Physics, vol. 82, no. 3, pp. 2257-2298, 2010, doi: 10.1103/RevModPhys.82.2257. [25] Y. Nagasaki, M. Suzuki, and J. Takahara, 'All-Dielectric Dual-Color Pixel with Subwavelength Resolution,' Nano Letters, vol. 17, no. 12, pp. 7500-7506, 2017, doi: 10.1021/acs.nanolett.7b03421. [26] T. V. Tsoulos and G. Tagliabue, 'Self-induced thermo-optical effects in silicon and germanium dielectric nanoresonators,' Nanophotonics, vol. 9, no. 12, pp. 3849-3861, 2020, doi: 10.1515/nanoph-2019-0534. [27] G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, 'Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,' Thin Solid Films, vol. 233, no. 1-2, pp. 166-170, 1993, doi: 10.1016/0040-6090(93)90082-z. [28] M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, 'High-sensitivity, single-beam n(2) measurements,' Optics Letters, vol. 14, no. 17, pp. 955-957, 1989, doi: 10.1364/ol.14.000955. [29] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, 'Sensitive measurement of optical nonlinearities using a single beam,' IEEE Journal of Quantum Electronics, vol. 26, no. 4, pp. 760-769, 1990, doi: 10.1109/3.53394. [30] G. Piredda, D. D. Smith, B. Wendling, and R. W. Boyd, 'Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient,' Journal of the Optical Society of America B, vol. 25, no. 6, pp. 945-950, 2008, doi: 10.1364/josab.25.000945. [31] Y.-T. Chen et al., 'Study of Nonlinear Plasmonic Scattering in Metallic Nanoparticles,' ACS Photonics, vol. 3, no. 8, pp. 1432-1439, 2016, doi: 10.1021/acsphotonics.6b00025. [32] T. C. Jagadale, D. S. Murali, and S. W. Chu, 'Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique,' Beilstein J Nanotechnol, vol. 10, no. 1, pp. 2182-2191, 2019, doi: 10.3762/bjnano.10.211. [33] J. G. White and W. B. Amos, 'Confocal microscopy comes of age,' Nature, vol. 328, no. 6126, pp. 183-184, 1987, doi: 10.1038/328183a0. [34] M. Quintanilla and L. M. Liz-Marzán, 'Guiding Rules for Selecting a Nanothermometer,' Nano Today, vol. 19, no. 1, pp. 126-145, 2018, doi: 10.1016/j.nantod.2018.02.012. [35] J. H. Parker, D. W. Feldman, and M. Ashkin, 'Raman Scattering by Silicon and Germanium,' Physical Review, vol. 155, no. 3, pp. 712-714, 1967, doi: 10.1103/PhysRev.155.712. [36] D. Tuschel, 'Raman Thermometry,' Spectroscopy, vol. 31, no. 12, pp. 8-13, 2016. [37] T. R. Hart, R. L. Aggarwal, and B. Lax, 'Temperature Dependence of Raman Scattering in Silicon,' Physical Review B, vol. 1, no. 2, pp. 638-642, 1970, doi: 10.1103/PhysRevB.1.638. [38] J. Jaramillo-Fernandez, E. Chavez-Angel, and C. M. Sotomayor-Torres, 'Raman thermometry analysis: Modelling assumptions revisited,' Applied Thermal Engineering, vol. 130, pp. 1175-1181, 2018, doi: 10.1016/j.applthermaleng.2017.11.033. [39] J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, 'Optical cavity modes in gold shell colloids,' Journal of Applied Physics, vol. 103, no. 12, p. 123105, 2008, doi: 10.1063/1.2939249. [40] Y. Luo et al., 'Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,' Nature Nanotechnology, vol. 13, no. 12, pp. 1137-1142, 2018, doi: 10.1038/s41565-018-0275-z. [41] D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, 'Anapole-Enhanced Intrinsic Raman Scattering from Silicon Nanodisks,' ACS Photonics, vol. 5, no. 7, pp. 2730-2736, 2018, doi: 10.1021/acsphotonics.8b00480. [42] A. Carattino, M. Caldarola, and M. Orrit, 'Gold Nanoparticles as Absolute Nanothermometers,' Nano Letters, vol. 18, no. 2, pp. 874-880, 2018, doi: 10.1021/acs.nanolett.7b04145. [43] G. P. Zograf et al., 'Stimulated Raman Scattering from Mie-Resonant Subwavelength Nanoparticles,' Nano Letters, vol. 20, no. 8, pp. 5786-5791, 2020, doi: 10.1021/acs.nanolett.0c01646. [44] M. Balkanski, R. F. Wallis, and E. Haro, 'Anharmonic effects in light scattering due to optical phonons in silicon,' Physical Review B, vol. 28, no. 4, pp. 1928-1934, 1983, doi: 10.1103/PhysRevB.28.1928. [45] Y. Li, X. Yang, Y. Yang, B. Wang, X. Li, and R. Salas-Montiel, 'Optical nanoheating of resonant silicon nanoparticles,' Optics Express, vol. 27, no. 21, pp. 30971-30978, 2019, doi: 10.1364/OE.27.030971. [46] 唐毓隆, '雷射掃描激發空間相依共振,' 碩士, 物理學研究所, 國立臺灣大學, 臺北市, 2021. [Online]. Available: https://hdl.handle.net/11296/58gmq8 [47] K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, 'Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,' Physical Review B, vol. 97, no. 8, p. 085414, 2018, doi: 10.1103/PhysRevB.97.085414. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85428 | - |
| dc.description.abstract | 最近幾十年來,半導體業的發展十分迅速,我們現在已經可以將數以億計的電晶體放在極微小的晶片中,讓各式各樣的電子產品達成我們想要的功能。而電晶體運作的關鍵機制在於輸入與輸出的非線性,達成電控制電的功能,由於矽元素在地球上的含量相當豐富,使矽成為積體電路中不可或缺的材料之一。 此外,矽的高折射率以及相較於金屬有較低的非輻射損失,讓矽在光學上也具有發展的潛力,不過矽塊材的光學非線性因子太過微小,在光訊號的控制上成為一大瓶頸。近年,我們透過光熱效應與米氏共振理論設計奈米晶矽的共振腔,有效將非線性折射率因子n2提升了數個數量級,達到10-1微米平方每毫瓦,可以有效改變奈米晶矽的折射率,產生夠大的光學非線性,讓矽光子學的發展向前邁進一步。但在先前的研究中,我們僅展示非線性散射,由於折射率的實部與虛部分別對應散射與吸收,預期在吸收也會有非線性。 本研究中,我們透過雷射掃描顯微鏡,探討不同共振模態奈米晶矽的非線性散射與非線性吸收,其中散射是指反向散射;而吸收是由材料溫度判斷。我們使用拉曼光譜學量測奈米晶矽的溫度,但為了同時對應非線性散射與吸收,不採取傳統定點量測的方式,而是將掃描過程所得的拉曼位移進行溫度分析。從實驗結果中發現特定大小粒子溫度上升斜率改變四倍,證實吸收也存在非線性。同時也利用理論進行模擬,將奈米晶矽散射與吸收的實驗結果與理論互相連結,另外,我們發現拉曼散射也具有非線性,可能會影響由公式中計算出的粒子溫度。 | zh_TW |
| dc.description.abstract | In recent decades, the development of the semiconductor industry has been rapid. To achieve the desired function, billions of transistors are placed on a tiny chip. The operation principle of a transistor is based on the nonlinearity between input and output. In a transistor-based integrated circuit, silicon is one of the indispensable materials due to its natural abundance. Inspired by the success of silicon electronics, many efforts went into developing silicon photonics devices due to the high refractive index and low non-radiative loss of silicon. However, the nonlinear optical index of bulk silicon is only 10-9 m2/mW. Recently, we have designed the nanocrystalline silicon resonant cavity to boost photothermal nonlinearity to 10-1 m2/mW via Mie resonance. In our previous research, we focused on nonlinear scattering. However, as the photothermal effect occurs, we also expect the absorption to exhibit nonlinearity since the refractive index's real and imaginary parts correspond to scattering and absorption. Here, we demonstrate the nonlinear absorption of nanocrystalline silicon with different resonance modes through laser scanning microscopy. We use Raman spectroscopy to measure nanoscale temperature, which represents absorption. For the particle with absorption nonlinearity, the temperature rising slope dramatically changes four times as excitation intensity increases. Moreover, an inconsistency between experiment and simulation suggests that conventional Raman thermometry may not be valid for this particle. This result opens a fundamental problem: how to calculate the temperature of nanoparticles under the influence of nonlinear absorption. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:29Z (GMT). No. of bitstreams: 1 U0001-1204202215454400.pdf: 2478209 bytes, checksum: 5830dbd9d3b3e261d6a280c5a83e7361 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 1 致謝 2 中文摘要 3 Abstract 4 Contents 6 Figure List 8 Table List 9 Chapter 1. Introduction 10 1.1 Nonlinear Silicon Photonics 10 1.2 Raman Thermometry for Nanoparticles 12 Chapter 2. Principles 14 2.1 Mie Scattering of Nanostructures 14 2.2 Photo-thermo-optical Nonlinear Optical Process 17 2.3 Laser Scanning Microscopy 22 2.4 Raman Thermometry 24 Chapter 3. Method 29 3.1 Optical Setup 29 3.2 Sample Fabrication 31 3.3 Simulation Setup 32 3.4 Analysis Method 34 Chapter 4. Results 36 4.1 Observation of Nonlinear Backward Rayleigh Scattering 36 4.1.1 Simulated Result 38 4.1.2 Experimental Result 41 4.2 Observation of Nonlinear Temperature Rise 42 4.2.1 Simulated Result 43 4.2.2 Experimental Result 45 Chapter 5. Discussion 48 5.1 Mie resonance mode and nonlinear temperature rise 48 5.2 Nonlinear Raman Scattering 49 5.3 Displacement Resonance 51 Chapter 6. Conclusion and Future Work 53 6.1 Conclusion 53 6.2 Future Work 53 Reference 55 Figure 2.1.1: The multipole expansion of spherical particle with a diameter of 150 nm of the 16 Figure 2.1.2: The scattering efficiency Qsca spectra 17 Figure 2.2.1: The cross-section of silicon nanosphere at different temperatures. 21 Figure 2.3.1: Schematic of the X-scan. 23 Figure 2.3.2: Schematic of confocal microscopy. 24 Figure 2.4.1: Schematic of Raman scattering. 26 Figure 3.1.1: Schematic of the scanning system of confocal microscopy. 30 Figure 3.1.2: The laser power after objective versus the angle of the half-wave plate. 31 Figure 3.2.1: Schematic of silicon nanoblock. 32 Figure 3.3.1: Schematic of the backward scattering simulation setup. 33 Figure 3.4.1: Determination of the scattering intensity of the sample. 34 Figure 3.4.2: Determination of the central peak of the scattering spectrum. 35 Figure 4.1.1: The scanning images of w = 80 to w = 280 nm silicon nanoblocks 37 Figure 4.1.2: The reversibility and repeatability of nonlinear scattering response 38 Figure 4.1.3: The simulated backward scattering cross-section spectra 39 Figure 4.1.4: The simulated nonlinear Rayleigh scattering intensity dependence 40 Figure 4.1.5: The experimentally measured nonlinear Rayleigh scattering intensity dependence 41 Figure 4.2.1: The Stokes scattering spectrum of w = 250 nm silicon nanoblock at the different excitation intensities. 42 Figure 4.2.2: The simulated absorption efficiency spectra 43 Figure 4.2.3: The simulated heating intensity dependence 44 Figure 4.2.4: The experimentally measured heating intensity dependence 46 Figure 4.2.5: The temperature dependence of Raman shift of silicon 47 Figure 5.1.1: The total scattering efficiency up to quadrupole terms 48 Figure 5.2.1: The Raman spectra at different excitation intensities 50 Figure 5.3.1: The displacement scattering nonlinearity of w = 180 nm silicon nanoblock. 52 Table 3.3.1: The material properties we used in the thermal simulation. 33 | |
| dc.language.iso | en | |
| dc.subject | 非線性 | zh_TW |
| dc.subject | 拉曼光譜學 | zh_TW |
| dc.subject | 奈米晶矽 | zh_TW |
| dc.subject | 光熱效應 | zh_TW |
| dc.subject | 矽光子學 | zh_TW |
| dc.subject | Raman spectroscopy | en |
| dc.subject | nanocrystalline silicon | en |
| dc.subject | photothermal effect | en |
| dc.subject | nonlinearity | en |
| dc.subject | silicon photonics | en |
| dc.title | 光與奈米晶矽的非線性交互作用 | zh_TW |
| dc.title | Nonlinear Optical Interaction in Nanocrystalline Silicon | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0003-0837-9097 | |
| dc.contributor.oralexamcommittee | 張之威(Chih-Wei Chang),林宮玄(Kung-Hsuan Lin),陳國平(Kuo-Ping Chen) | |
| dc.subject.keyword | 矽光子學,非線性,光熱效應,奈米晶矽,拉曼光譜學, | zh_TW |
| dc.subject.keyword | silicon photonics,nonlinearity,photothermal effect,nanocrystalline silicon,Raman spectroscopy, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202200687 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-22 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1204202215454400.pdf | 2.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
