Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85425
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor游佳欣zh_TW
dc.contributor.advisorJiashing Yuen
dc.contributor.author陳胤全zh_TW
dc.contributor.authorYin-Chuan Chenen
dc.date.accessioned2023-03-19T23:16:27Z-
dc.date.available2023-12-25-
dc.date.copyright2022-07-27-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Koons, G. L.; Diba, M.; Mikos, A. G., Materials design for bone-tissue engineering. Nature Reviews Materials 2020, 5 (8), 584-603.
2. Luo, T.; Yang, X.; Sun, Y.; Huang, X.; Zou, L.; Liu, J., Effect of MicroRNA-20a on Osteogenic Differentiation of Human Adipose Tissue-Derived Stem Cells. Cells Tissues Organs 2019, 208 (3-4), 148-157.
3. Shen, W.; Sun, B.; Zhou, C.; Ming, W.; Zhang, S.; Wu, X., CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose‐derived mesenchymal stem cells and bone regeneration in osteoporosis via miR‐33a‐5p. Journal of Cellular and Molecular Medicine 2020, 24 (21), 12513-12524.
4. Mellor, L. F.; Mohiti-Asli, M.; Williams, J.; Kannan, A.; Dent, M. R.; Guilak, F.; Loboa, E. G., Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source. Tissue Engineering Part A 2015, 21 (17-18), 2323-2333.
5. Aubin, J. E.; Liu, F.; Malaval, L.; Gupta, A. K., Osteoblast and chondroblast differentiation. Bone 1995, 17 (2, Supplement 1), S77-S83.
6. Bicer, M.; Cottrell, G. S.; Widera, D., Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells. Stem Cell Research & Therapy 2021, 12 (1).
7. Zanetti, A. S.; Sabliov, C.; Gimble, J. M.; Hayes, D. J., Human adipose-derived stem cells and three-dimensional scaffold constructs: A review of the biomaterials and models currently used for bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2013, 101B (1), 187-199.
8. Thrivikraman, G.; Athirasala, A.; Twohig, C.; Boda, S. K.; Bertassoni, L. E., Biomaterials for Craniofacial Bone Regeneration. Dental Clinics of North America 2017, 61 (4), 835-856.
9. Burg, K. J. L.; Porter, S.; Kellam, J. F., Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21 (23), 2347-2359.
10. Fernandez-Yague, M. A.; Abbah, S. A.; McNamara, L.; Zeugolis, D. I.; Pandit, A.; Biggs, M. J., Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews 2015, 84, 1-29.
11. Fahy, N.; Alini, M.; Stoddart, M. J., Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. Journal of Orthopaedic Research 2017.
12. Rolfe, R.; Roddy, K.; Murphy, P., Mechanical Regulation of Skeletal Development. Current Osteoporosis Reports 2013, 11 (2), 107-116.
13. McDermott, A. M.; Eastburn, E. A.; Kelly, D. J.; Boerckel, J. D., Effects of chondrogenic priming duration on mechanoregulation of engineered cartilage. Journal of Biomechanics 2021, 125, 110580.
14. Ge, Y.; Li, Y.; Wang, Z.; Li, L.; Teng, H.; Jiang, Q., Effects of Mechanical Compression on Chondrogenesis of Human Synovium-Derived Mesenchymal Stem Cells in Agarose Hydrogel. Front Bioeng Biotechnol 2021, 9, 697281-697281.
15. Mouw, J. K.; Connelly, J. T.; Wilson, C. G.; Michael, K. E.; Levenston, M. E., Dynamic Compression Regulates the Expression and Synthesis of Chondrocyte-Specific Matrix Molecules in Bone Marrow Stromal Cells. STEM CELLS 2007, 25 (3), 655-663.
16. Venkatesan, J. K.; Frisch, J.; Rey-Rico, A.; Schmitt, G.; Madry, H.; Cucchiarini, M., Impact of mechanical stimulation on the chondrogenic processes in human bone marrow aspirates modified to overexpress sox9 via rAAV vectors. Journal of Experimental Orthopaedics 2017, 4 (1).
17. Zhu, W.; Ye, T.; Lee, S.-J.; Cui, H.; Miao, S.; Zhou, X.; Shuai, D.; Zhang, L. G., Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14 (7), 2485-2494.
18. Fu, C.; Pan, S.; Ma, Y.; Kong, W.; Qi, Z.; Yang, X., Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation. Artificial cells, nanomedicine, and biotechnology 2019, 47 (1), 1867-1876.
19. Gong, H. Y.; Park, J.; Kim, W.; Kim, J.; Lee, J. Y.; Koh, W.-G., A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. ACS applied materials & interfaces 2019, 11 (51), 47695-47706.
20. Je, H.-J.; Kim, M.-G.; Cho, I.-H.; Kwon, H.-J., Induction of Myogenic Differentiation in Myoblasts by Electrical Stimulation. Korean Society of Physical Medicine 2019, 14 (2), 63-70.
21. Leppik, L.; Oliveira, K. M. C.; Bhavsar, M. B.; Barker, J. H., Electrical stimulation in bone tissue engineering treatments. European Journal of Trauma and Emergency Surgery 2020, 46 (2), 231-244.
22. Li, J.; Liu, X.; Crook, J. M.; Wallace, G. G., Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. Materials Science and Engineering: C 2020, 107, 110312.
23. Zhang, Z.; Zheng, T.; Zhu, R., Microchip with Single-Cell Impedance Measurements for Monitoring Osteogenic Differentiation of Mesenchymal Stem Cells under Electrical Stimulation. Analytical Chemistry 2020, 92 (18), 12579-12587.
24. Hu, W.-W.; Hsu, Y.-T.; Cheng, Y.-C.; Li, C.; Ruaan, R.-C.; Chien, C.-C.; Chung, C.-A.; Tsao, C.-W., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science and Engineering: C 2014, 37, 28-36.
25. Cheng, Y.-C.; Chen, C.-H.; Kuo, H.-W.; Yen, T.-L.; Mao, Y.-Y.; Hu, W.-W., Electrical Stimulation through Conductive Substrate to Enhance Osteo-Differentiation of Human Dental Pulp-Derived Stem Cells. Applied Sciences 2019, 9 (18).
26. Khaw, J. S.; Xue, R.; Cassidy, N. J.; Cartmell, S. H., Electrical stimulation of titanium to promote stem cell orientation, elongation and osteogenesis. Acta Biomaterialia 2022, 139, 204-217.
27. Hollister, S. J., Porous scaffold design for tissue engineering. Nature Materials 2005, 4 (7), 518-524.
28. Shield, K.; Ackland, M. L.; Ahmed, N.; Rice, G. E., Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecologic Oncology 2009, 113 (1), 143-148.
29. Duval, K.; Grover, H.; Han, L.-H.; Mou, Y.; Pegoraro, A. F.; Fredberg, J.; Chen, Z., Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology 2017, 32 (4), 266-277.
30. Kumar, G.; Tison, C. K.; Chatterjee, K.; Pine, P. S.; McDaniel, J. H.; Salit, M. L.; Young, M. F.; Simon, C. G., The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials 2011, 32 (35), 9188-9196.
31. El-Sherbiny, I. M.; Yacoub, M. H., Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013, 2013 (3), 316-342.
32. Reddy, N.; Reddy, R.; Jiang, Q., Crosslinking biopolymers for biomedical applications. Trends in Biotechnology 2015, 33 (6), 362-369.
33. Jin, R.; Moreira Teixeira, L. S.; Dijkstra, P. J.; van Blitterswijk, C. A.; Karperien, M.; Feijen, J., Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 2010, 31 (11), 3103-3113.
34. Yamamoto, M.; Ikada, Y.; Tabata, Y., Controlled release of growth factors based on biodegradation of gelatin hydrogel. Journal of Biomaterials Science, Polymer Edition 2001, 12 (1), 77-88.
35. Tabata, Y.; Hijikata, S.; Ikada, Y., Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. Journal of Controlled Release 1994, 31 (2), 189-199.
36. Taddei, P.; Chiono, V.; Anghileri, A.; Vozzi, G.; Freddi, G.; Ciardelli, G., Silk Fibroin/Gelatin Blend Films Crosslinked with Enzymes for Biomedical Applications. Macromolecular Bioscience 2013, 13 (11), 1492-1510.
37. Chen, T.; Embree, H. D.; Wu, L.-Q.; Payne, G. F., In vitro protein–polysaccharide conjugation: Tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 2002, 64 (6), 292-302.
38. Chen, T.; Embree, H. D.; Brown, E. M.; Taylor, M. M.; Payne, G. F., Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 2003, 24 (17), 2831-2841.
39. Savoca, M.; Tonoli, E.; Atobatele, A.; Verderio, E., Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. Micromachines 2018, 9 (11), 562.
40. Moreira Teixeira, L. S.; Feijen, J.; van Blitterswijk, C. A.; Dijkstra, P. J.; Karperien, M., Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 2012, 33 (5), 1281-1290.
41. Zhang, S.; Liu, P.; Chen, L.; Wang, Y.; Wang, Z.; Zhang, B., The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 2015, 41, 15-25.
42. Rungarunlert, S.; Techakumphu, M.; Pirity, M. K.; Dinnyes, A., Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors. World J Stem Cells 2009, 1 (1), 11-21.
43. Cheng, N.-C.; Wang, S.; Young, T.-H., The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 2012, 33 (6), 1748-1758.
44. Bauwens, C. L.; Song, H.; Thavandiran, N.; Ungrin, M.; Massé, S.; Nanthakumar, K.; Seguin, C.; Zandstra, P. W., Geometric Control of Cardiomyogenic Induction in Human Pluripotent Stem Cells. Tissue Engineering Part A 2011, 17 (15-16), 1901-1909.
45. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia 2014, 10 (6), 2341-2353.
46. Guo, B.; Ma, P. X., Conducting Polymers for Tissue Engineering. Biomacromolecules 2018, 19 (6), 1764-1782.
47. Kim, S.; Jang, L. K.; Jang, M.; Lee, S.; Hardy, J. G.; Lee, J. Y., Electrically Conductive Polydopamine–Polypyrrole as High Performance Biomaterials for Cell Stimulation in Vitro and Electrical Signal Recording in Vivo. ACS Applied Materials & Interfaces 2018, 10 (39), 33032-33042.
48. Le, T.-H.; Kim, Y.; Yoon, H., Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9 (12), 150.
49. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R., Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Advanced Materials 2000, 12 (7), 481-494.
50. Liu, J.; Wang, X.; Li, D.; Coates, N. E.; Segalman, R. A.; Cahill, D. G., Thermal Conductivity and Elastic Constants of PEDOT:PSS with High Electrical Conductivity. Macromolecules 2015, 48 (3), 585-591.
51. Xia, Y.; Ouyang, J., Significant Different Conductivities of the Two Grades of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate), Clevios P and Clevios PH1000, Arising from Different Molecular Weights. ACS Applied Materials & Interfaces 2012, 4 (8), 4131-4140.
52. Wan, A. M.-D.; Inal, S.; Williams, T.; Wang, K.; Leleux, P.; Estevez, L.; Giannelis, E. P.; Fischbach, C.; Malliaras, G. G.; Gourdon, D., 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. Journal of Materials Chemistry B 2015, 3 (25), 5040-5048.
53. Tayebi; Shahini, A.; Yazdimamaghani, M.; Walker, K. J.; Eastman, M.; Hatami-Marbini, H.; Smith, B.; Ricci, J. L.; Madihally, S.; Vashaee, D., 3D conductive nanocomposite scaffold for bone tissue engineering. International Journal of Nanomedicine 2013, 167.
54. Zhang, J.; Fu, Y.; Mo, A., <p>Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration</p>. International Journal of Nanomedicine 2019, Volume 14, 10091-10103.
55. Guo, R.; Xiao, M.; Zhao, W.; Zhou, S.; Hu, Y.; Liao, M.; Wang, S.; Yang, X.; Chai, R.; Tang, M., 2D Ti3C2TxMXene couples electrical stimulation to promote proliferation and neural differentiation of neural stem cells. Acta Biomaterialia 2022, 139, 105-117.
56. Wu, C.-W.; Unnikrishnan, B.; Chen, I. W. P.; Harroun, S. G.; Chang, H.-T.; Huang, C.-C., Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Materials 2020, 25, 563-571.
57. Fu, Y.; Zhang, J.; Lin, H.; Mo, A., 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration. Materials Science and Engineering: C 2021, 118, 111367.
58. Cheng, H.; Yue, K.; Kazemzadeh-Narbat, M.; Liu, Y.; Khalilpour, A.; Li, B.; Zhang, Y. S.; Annabi, N.; Khademhosseini, A., Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis. ACS Applied Materials & Interfaces 2017, 9 (13), 11428-11439.
59. Liu, Y.; Sun, D.; Askari, S.; Patel, J.; Macias-Montero, M.; Mitra, S.; Zhang, R.; Lin, W.-F.; Mariotti, D.; Maguire, P., Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions. Scientific Reports 2015, 5 (1), 15765.
60. Qiu, J.; Xia, X.; Hu, Z.; Zhou, S.; Wang, Y.; Wang, Y.; Zhang, R.; Li, J.; Zhou, Y., Molecular ammonia sensing of PEDOT:PSS/nitrogen doped MXene Ti<sub>3</sub>C<sub>2</sub>T <sub>x</sub> composite film at room temperature. Nanotechnology 2021, 33 (6), 065501.
61. Seekaew, Y.; Lokavee, S.; Phokharatkul, D.; Wisitsoraat, A.; Kerdcharoen, T.; Wongchoosuk, C., Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Organic Electronics 2014, 15 (11), 2971-2981.
62. Zhu, D.; Van Ooij, W. J., Structural characterization of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine silanes by Fourier-transform infrared spectroscopy and electrochemical impedance spectroscopy. Journal of Adhesion Science and Technology 2002, 16 (9), 1235-1260.
63. Luo, S.; Xie, L.; Han, F.; Wei, W.; Huang, Y.; Zhang, H.; Zhu, M.; Schmidt, O. G.; Wang, L., Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High-Power Zinc Ion Battery. Advanced Functional Materials 2019, 29 (28), 1901336.
64. Ahmad, S.; Ahmad, A.; Khan, S.; Ahmad, S.; Khan, I.; Zada, S.; Fu, P., Algal extracts based biogenic synthesis of reduced graphene oxides (rGO) with enhanced heavy metals adsorption capability. Journal of Industrial and Engineering Chemistry 2019, 72, 117-124.
65. Lin, H.; Gao, S.; Dai, C.; Chen, Y.; Shi, J., A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. Journal of the American Chemical Society 2017, 139 (45), 16235-16247.
66. Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D.-J., Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Applied Materials & Interfaces 2017, 9 (42), 37184-37190.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85425-
dc.description.abstract近年來,生醫組織工程發展迅速,許多研究致力於研發新的生物支架,提供細胞更多載體的選擇。生物支架的原料通常分為天然高分子,如: 明膠、角蛋白、幾丁質等,或是合成高分子,如: 聚甲基丙烯酸甲酯、聚乙烯等,前者有較高的生物相容性與生物降解性,而後者則可以依照需求合成具有特定性質的材料,用途更加廣泛。除此之外,越來越多的文獻證明施加外力、電刺激有助於促進幹細胞的硬骨、軟骨組織分化,因此生物支架不僅只是作為細胞載體,更可以在特定環境下模擬體內組織增生的狀況。
本研究將分為兩個部分,第一個部分為施加外力於載有人類脂肪幹細胞的酵素交聯明膠水凝膠進行軟骨分化。將人類脂肪幹細胞先透過特定的模具製成細胞球,將其載入以酵素交聯製成的明膠水凝膠中,再置於動態培養擠壓裝置中進行軟骨分化,模擬細胞在體內受力環境下進行軟骨分化,並預期施加外力刺激能促進人類脂肪幹細胞的分化效果。
第二個部分為導電高分子聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸鹽) (PEDOT:PSS)結合新型二維奈米導電材料鈦碳化物(MXene, Ti3C2X3) 製備三維導電支架。現有文獻指出MXene具有良好的生物相容性、骨誘導性和骨再生活性,因此將PEDOT:PSS與MXene所作成的三維支架被應用於人類脂肪幹細胞的硬骨分化,並透過電刺激提升硬骨分化的效果。研究結果顯示人類脂肪幹細胞可以成功地在支架內部生長,說明此導電三維支架的低細胞毒性,並預期最終硬骨分化特定基因能有顯著差異,證明PEDOT:PSS與MXene的三維導電支架可作為電刺激應用於人類脂肪幹細胞硬骨分化的平台。
zh_TW
dc.description.abstractRecently, biomedical tissue engineering has developed rapidly, and many studies have been devoted to developing new biological scaffolds for cells. The materials of biological scaffolds are usually made of two kinds of polymers. One is natural polymers such as gelatin, keratin, chitin, etc. The other is synthetic polymers such as polymethyl methacrylate, polyethylene, etc. The former has high biocompatibility and biodegradability, and the other can synthesize materials with specific properties according to needs, which is more widely used. In addition, there are more studies have shown that the application of external force and electrical stimulation promotes stem cells chondrogenic and osteogenic differentiation. Therefore, bioscaffolds are not only used as cell carriers but can also simulate the state of tissue proliferation in vivo in a specific environment.
This study has two parts, and the first part is the chondrogenic differentiation of human adipose-derived stem cells-laden enzyme-crosslinked gelatin hydrogel with external force. The human adipose-derived stem cells (hASCs) were first made into cell spheroids through a specific mold and loaded into gelatin hydrogels made of enzyme cross-linking. And then placed them in a dynamic culture compression device for chondrogenic differentiation, which simulates cell the chondrogenic differentiation in vivo. It is expected that the application of external force compression can promote the differentiation effect of hASCs.
The second part is about poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) combined with a new two-dimensional nano-conducting material titanium carbide (MXene, Ti3C2X3) to prepare three-dimensional (3D) conductive scaffolds. Some studies showed that MXene has good biocompatibility, osteoinductivity, and bone regeneration activity. PEDOT:PSS/MXene scaffold was applied to the osteogenic differentiation of hASCs, and electrical stimulation was used to enhance the osteogenic differentiation. The results showed that the conductive scaffold has low cytotoxicity to hASCs, which could grow and migrate in the 3D scaffold. It is expected that osteogenic specific gene markers could be significantly different, making the PEDOT:PSS/MXene scaffold an excellent platform for the osteogenic differentiation of hASCs with electrical stimulation.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:27Z (GMT). No. of bitstreams: 1
U0001-2007202212145300.pdf: 4208162 bytes, checksum: 734fb0d6c73f5183af82ca60bd32883f (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Contents v
List of Figures ix
List of Tables xiii
List of Equations xiv
Chapter 1 Introduction 1
1.1 Tissue engineering 1
1.1.1 Bone tissue engineering 1
1.1.2 Mechanical stimulation on bone tissue engineering 3
1.1.3 Electrical stimulation on bone tissue engineering 3
1.2 Cell spheroid-laden hydrogel 4
1.2.1 3D scaffold introduction 4
1.2.2 Enzyme-crosslinked gelatin hydrogel 5
1.2.3 Cell spheroids formation in 3D culture 6
1.3 Three-dimensional conductive scaffold 7
1.3.1 Conductive polymer introduction 7
1.3.2 PEDOT:PSS 8
1.3.3 Fabrication methods for PEDOT-based porous scaffolds 9
1.3.4 Incorporation of MXene nanoflakes – Ti3C2TX 9
1.4 Motivation and aims 10
1.5 Research framework 11
Chapter 2 Materials and Methods 14
2.1 Materials 14
2.1.1 Preparation of agarose micro-mold 14
2.1.2 Fabrication of mTG-crosslinked gelatin hydrogel 14
2.1.3 Fabrication of PEDOT:PSS/MXene scaffold 15
2.1.4 Cell culture 15
2.1.5 Cell differentiation 16
2.1.6 Cell viability and cytotoxicity test 16
2.1.7 Alkaline phosphatase (ALP) Assay 17
2.1.8 Immunofluorescence staining 17
2.1.9 Real-time quantitative polymerase chain reaction (qPCR) 18
2.2 Equipment 19
2.3 Solution formula 21
2.4 Methods 25
2.4.1 Preparation of gelatin/mTG hydrogel 25
2.4.2 Characterization of the hydrogel 25
2.4.3 Preparation of agarose micro-well plate 26
2.4.4 Cell culture 27
2.4.5 Formation of spheroids 27
2.4.6 Characterization of cell spheroids 28
2.4.7 Chondrogenic differentiation with mechanical stimulation 29
2.4.8 Immunofluorescent images for chondrogenic differentiation 30
2.4.9 RNA extraction for chondrogenic differentiation experiment 31
2.4.10 Synthesis of MXene nanoflakes 32
2.4.11 Fabrication of the PEDOT:PSS/MXene scaffold 33
2.4.12 Conductive properties 35
2.4.13 Liquid uptake behavior 36
2.4.14 Mechanical test 36
2.4.15 Protein adsorption 37
2.4.16 Cell seeding 37
2.4.17 Biocompatibility analysis 38
2.4.18 Osteogenic differentiation with electrical stimulation 40
2.4.19 Immunofluorescent images for osteogenic differentiation 41
2.4.20 RNA extraction for osteogenic differentiation experiment 41
2.4.21 Statistical analysis 42
Chapter 3 Results and discussion 43
3.1 Chondrogenesis potential of hASC spheroids in enzyme-crosslinked hydrogel with mechanical stimulation 43
3.1.1 Physical characteristics of enzyme-crosslinked hydrogels 43
3.1.2 Cell spheroids 44
3.1.3 Cell morphology 45
3.1.4 Gene expression 46
3.2 Characterization of PEDOT:PSS/MXene scaffolds 53
3.2.1 Microstructure of PEDOT:PSS/MXene 3D scaffolds 53
3.2.2 FTIR spectrum 55
3.2.3 Liquid uptake behavior 56
3.2.4 Mechanical properties 56
3.2.5 Electrical conductivity properties 57
3.2.6 Protein adsorption 58
3.3 Osteoinductive potential of hASCs in MXene-composited PEDOT:PSS scaffolds 65
3.3.1 Cell viability and cytotoxicity 65
3.3.2 Osteoinductive potential 65
3.3.3 Electrical stimulation 68
Chapter 4 Conclusions 75
References 77
-
dc.language.isoen-
dc.subject動態擠壓刺激zh_TW
dc.subject人類脂肪幹細胞zh_TW
dc.subject明膠zh_TW
dc.subject酵素交聯水凝膠zh_TW
dc.subject電刺激zh_TW
dc.subject硬骨分化zh_TW
dc.subject氣凝膠zh_TW
dc.subject二維過渡金屬碳化物zh_TW
dc.subject導電高分子zh_TW
dc.subject軟骨分化zh_TW
dc.subject動態擠壓刺激zh_TW
dc.subject人類脂肪幹細胞zh_TW
dc.subject酵素交聯水凝膠zh_TW
dc.subject明膠zh_TW
dc.subject電刺激zh_TW
dc.subject硬骨分化zh_TW
dc.subject氣凝膠zh_TW
dc.subject二維過渡金屬碳化物zh_TW
dc.subject導電高分子zh_TW
dc.subject軟骨分化zh_TW
dc.subjectelectrical stimulationen
dc.subjectgelatinen
dc.subjectenzyme-crosslinked hydrogelsen
dc.subjecthuman adipose-derived stem cellsen
dc.subjectmechanical stimulationen
dc.subjectcartilage differentiationen
dc.subjectconductive polymersen
dc.subjecttwo-dimensional transition metal carbidesen
dc.subjectaerogelsen
dc.subjectosteogenic differentiationen
dc.subjectelectrical stimulationen
dc.subjectgelatinen
dc.subjectenzyme-crosslinked hydrogelsen
dc.subjecthuman adipose-derived stem cellsen
dc.subjectmechanical stimulationen
dc.subjectcartilage differentiationen
dc.subjectconductive polymersen
dc.subjecttwo-dimensional transition metal carbidesen
dc.subjectaerogelsen
dc.subjectosteogenic differentiationen
dc.title施加刺激以促進人類脂肪幹細胞軟硬骨分化zh_TW
dc.titleApplication of Stimulations Promotes Chondrogenic and Osteogenic Differentiation of Human Adipose-derived Stem Cellsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭乃禎;許藝瓊;李亦宸zh_TW
dc.contributor.oralexamcommitteeNai-Chen Cheng;Yi-Chiung Hsu;Yi-Chen Ethan Lien
dc.subject.keyword明膠,酵素交聯水凝膠,人類脂肪幹細胞,動態擠壓刺激,軟骨分化,導電高分子,二維過渡金屬碳化物,氣凝膠,硬骨分化,電刺激,zh_TW
dc.subject.keywordgelatin,enzyme-crosslinked hydrogels,human adipose-derived stem cells,mechanical stimulation,cartilage differentiation,conductive polymers,two-dimensional transition metal carbides,aerogels,osteogenic differentiation,electrical stimulation,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202201570-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-07-20-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2027-07-20-
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-110-2.pdf
  Until 2027-07-20
4.11 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved