請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85412完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣 | zh_TW |
| dc.contributor.advisor | Jiashing Yu | en |
| dc.contributor.author | 劉俊廷 | zh_TW |
| dc.contributor.author | Chun-Ting Liu | en |
| dc.date.accessioned | 2023-03-19T23:16:17Z | - |
| dc.date.available | 2023-12-25 | - |
| dc.date.copyright | 2022-07-27 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | References
(1) Cao, X.; Hou, Y.; Zhang, X.; Xu, C.; Jia, P.; Sun, X.; Sun, L.; Gao, Y.; Yang, H.; Cui, Z.; et al. A comparative, correlate analysis and projection of global and regional life expectancy, healthy life expectancy, and their GAP: 1995-2025. Journal of Global Health 2020, 10 (2). DOI: 10.7189/jogh.10.020407. (2) Tran, H. D. N.; Park, K. D.; Ching, Y. C.; Huynh, C.; Nguyen, D. H. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. Journal of Industrial and Engineering Chemistry 2020, 89, 58-82. DOI: https://doi.org/10.1016/j.jiec.2020.06.017. (3) Han, F.; Wang, J.; Ding, L.; Hu, Y.; Li, W.; Yuan, Z.; Guo, Q.; Zhu, C.; Yu, L.; Wang, H.; et al. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in Bioengineering and Biotechnology 2020, 8, Review. DOI: 10.3389/fbioe.2020.00083. (4) Abramoff, B.; Caldera, F. E. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Medical Clinics of North America 2020, 104 (2), 293-311. DOI: https://doi.org/10.1016/j.mcna.2019.10.007. (5) Johnstone, B.; Alini, M.; Cucchiarini, M.; Dodge, G.; Eglin, D.; Guilak, F.; Madry, H.; Mata, A.; Mauck, R.; Semino, C.; et al. Tissue engineering for articular cartilage repair – the state of the art. European Cells and Materials 2013, 25, 248-267. DOI: 10.22203/ecm.v025a18. (6) healthdirect. Osteoarthritis. healthdirect: Australia, 2020. (7) Zhang, Y.; Liu, X.; Zeng, L.; Zhang, J.; Zuo, J.; Zou, J.; Ding, J.; Chen, X. Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Advanced Functional Materials 2019, 29 (36), 1903279. DOI: 10.1002/adfm.201903279. (8) Fan, J.; Gong, Y.; Ren, L.; Varshney, R. R.; Cai, D.; Wang, D.-A. In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta Biomaterialia 2010, 6 (3), 1178-1185. DOI: 10.1016/j.actbio.2009.08.042. (9) Tritz, J.; Rahouadj, R.; de Isla, N.; Charif, N.; Pinzano, A.; Mainard, D.; Bensoussan, D.; Netter, P.; Stoltz, J.-F.; Benkirane-Jessel, N.; et al. Designing a three-dimensional alginate hydrogel by spraying method for cartilage tissue engineering. Soft Matter 2010, 6 (20), 5165-5174, 10.1039/C000790K. DOI: 10.1039/C000790K. (10) Tseng, S.-J.; Huang, S.-T.; Wu, C.-C.; Cheng, C.-H.; Lin, J.-C. Studies of proliferation and chondrogenic differentiation of rat adipose stem cells using an anti-oxidative polyurethane scaffold combined with cyclic compression culture. Materials Science and Engineering: C 2020, 112, 110964. DOI: https://doi.org/10.1016/j.msec.2020.110964. (11) Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in Fibrin–Polyurethane Composites Is Modulated by Frequency and Amplitude of Dynamic Compression and Shear Stress. Tissue Engineering Part A 2010, 16 (2), 575-584. DOI: 10.1089/ten.tea.2009.0262. (12) Chang, C. Y.; Park, J. H.; Ouh, I.-O.; Gu, N.-Y.; Jeong, S. Y.; Lee, S.-A.; Lee, Y.-H.; Hyun, B.-H.; Kim, K. S.; Lee, J. Novel method to repair articular cartilage by direct reprograming of prechondrogenic mesenchymal stem cells. European Journal of Pharmacology 2021, 911, 174416. DOI: 10.1016/j.ejphar.2021.174416. (13) Vaca-González, J. J.; Clara-Trujillo, S.; Guillot-Ferriols, M.; Ródenas-Rochina, J.; Sanchis, M. J.; Ribelles, J. L. G.; Garzón-Alvarado, D. A.; Ferrer, G. G. Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid – Gelatin injectable hydrogels. Bioelectrochemistry 2020, 134, 107536. DOI: 10.1016/j.bioelechem.2020.107536. (14) Vandghanooni, S.; Eskandani, M. Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. International Journal of Biological Macromolecules 2019, 141, 636-662. DOI: 10.1016/j.ijbiomac.2019.09.020. (15) Ferrigno, B.; Bordett, R.; Duraisamy, N.; Moskow, J.; Arul, M. R.; Rudraiah, S.; Nukavarapu, S. P.; Vella, A. T.; Kumbar, S. G. Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and regeneration. Bioactive Materials 2020, 5 (3), 468-485. DOI: 10.1016/j.bioactmat.2020.03.010. (16) Guo, B.; Ma, P. X. Conducting Polymers for Tissue Engineering. Biomacromolecules 2018, 19 (6), 1764-1782. DOI: 10.1021/acs.biomac.8b00276. (17) Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9 (12), 150. DOI: 10.3390/polym9040150. (18) Xia, Y.; Ouyang, J. Significant Different Conductivities of the Two Grades of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate), Clevios P and Clevios PH1000, Arising from Different Molecular Weights. ACS Applied Materials & Interfaces 2012, 4 (8), 4131-4140. DOI: 10.1021/am300881m. (19) Guex, A. G.; Puetzer, J. L.; Armgarth, A.; Littmann, E.; Stavrinidou, E.; Giannelis, E. P.; Malliaras, G. G.; Stevens, M. M. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomaterialia 2017, 62, 91-101. DOI: https://doi.org/10.1016/j.actbio.2017.08.045. (20) Magaz, A.; Spencer, B. F.; Hardy, J. G.; Li, X.; Gough, J. E.; Blaker, J. J. Modulation of Neuronal Cell Affinity on PEDOT–PSS Nonwoven Silk Scaffolds for Neural Tissue Engineering. ACS Biomaterials Science & Engineering 2020, 6 (12), 6906-6916. DOI: 10.1021/acsbiomaterials.0c01239. (21) Heo, D. N.; Lee, S. J.; Timsina, R.; Qiu, X. Y.; Castro, N. J.; Zhang, L. G. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Materials Science & Engineering C-Materials for Biological Applications 2019, 99, 582-590. DOI: 10.1016/j.msec.2019.02.008. (22) Chen, F.-J.; Hsiao, Y.-S.; Liao, I. H.; Liu, C.-T.; Wu, P.-I.; Lin, C.-Y.; Cheng, N.-C.; Yu, J. Rational design of a highly porous electronic scaffold with concurrent enhancement in cell behaviors and differentiation under electrical stimulation. Journal of Materials Chemistry B 2021, 9 (37), 7674-7685. DOI: 10.1039/d1tb01260f. (23) Elias, P. Z.; Spector, M. Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials 2012, 12, 63-73. DOI: https://doi.org/10.1016/j.jmbbm.2012.03.014. (24) Gao, X.; Kusmierczyk, P.; Shi, Z.; Liu, C.; Yang, G.; Sevostianov, I.; Silberschmidt, V. V. Through-thickness stress relaxation in bacterial cellulose hydrogel. J Mech Behav Biomed Mater 2016, 59, 90-98. DOI: 10.1016/j.jmbbm.2015.12.021 From NLM Medline. (25) Kwansa, A. L.; Empson, Y. M.; Ekwueme, E. C.; Walters, V. I.; Freeman, J. W.; Laurencin, C. T. Novel matrix based anterior cruciate ligament (ACL) regeneration. Soft Matter 2010, 6 (20), 5016. DOI: 10.1039/c0sm00182a. (26) Sethuraman, V.; Makornkaewkeyoon, K.; Khalf, A.; Madihally, S. V. Influence of scaffold forming techniques on stress relaxation behavior of polycaprolactone scaffolds. Journal of Applied Polymer Science 2013, n/a-n/a. DOI: 10.1002/app.39599. (27) Kwon, H. J.; Lee, G. S.; Chun, H. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Scientific Reports 2016, 6. DOI: 10.1038/srep39302. (28) Barker, M. K.; Seedhom, B. B. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime? Rheumatology 2001, 40 (3), 274-284. DOI: 10.1093/rheumatology/40.3.274. (29) Wang, X.; Peng, Y.; Wang, J.; Zeng, Q. Pore Structure Damages in Cement-Based Materials by Mercury Intrusion: A Non-Destructive Assessment by X-Ray Computed Tomography. Materials 2019, 12 (14), 2220. DOI: 10.3390/ma12142220. (30) Steiner, L.; Synek, A.; Pahr, D. H. Comparison of different microCT-based morphology assessment tools using human trabecular bone. Bone Reports 2020, 12, 100261. DOI: https://doi.org/10.1016/j.bonr.2020.100261. (31) Karagiannidis, E.; Papazoglou, A. S.; Sofidis, G.; Chatzinikolaou, E.; Keklikoglou, K.; Panteris, E.; Kartas, A.; Stalikas, N.; Zegkos, T.; Girtovitis, F.; et al. Micro-CT-Based Quantification of Extracted Thrombus Burden Characteristics and Association With Angiographic Outcomes in Patients With ST-Elevation Myocardial Infarction: The QUEST-STEMI Study. Frontiers in Cardiovascular Medicine 2021, 8, Original Research. DOI: 10.3389/fcvm.2021.646064. (32) Xia, W.; Liu, W.; Cui, L.; Liu, Y.; Zhong, W.; Liu, D.; Wu, J.; Chua, K.; Cao, Y. Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. Journal of Biomedical Materials Research 2004, 71B (2), 373-380. DOI: 10.1002/jbm.b.30087. (33) Swann, A. C.; Seedhom, B. B. THE STIFFNESS OF NORMAL ARTICULAR CARTILAGE AND THE PREDOMINANT ACTING STRESS LEVELS: IMPLICATIONS FOR THE AETIOLOGY OF OSTEOARTHROSIS. Rheumatology 1993, 32 (1), 16-25. DOI: 10.1093/rheumatology/32.1.16. (34) Luo, L.; Chu, J. Y. J.; Eswaramoorthy, R.; Mulhall, K. J.; Kelly, D. J. Engineering Tissues That Mimic the Zonal Nature of Articular Cartilage Using Decellularized Cartilage Explants Seeded with Adult Stem Cells. ACS Biomaterials Science & Engineering 2017, 3 (9), 1933-1943. DOI: 10.1021/acsbiomaterials.6b00020. (35) Bhardwaj, N.; Nguyen, Q. T.; Chen, A. C.; Kaplan, D. L.; Sah, R. L.; Kundu, S. C. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 2011, 32 (25), 5773-5781. DOI: https://doi.org/10.1016/j.biomaterials.2011.04.061. (36) Seran, E.; Godefroy, M.; Pili, E.; Michielsen, N.; Bondiguel, S. What we can learn from measurements of air electric conductivity in <sup>222</sup> Rn-rich atmosphere. Earth and Space Science 2017, 4 (2), 91-106. DOI: 10.1002/2016ea000241. (37) Xu, Q.; Engquist, B. A mathematical model for fitting and predicting relaxation modulus and simulating viscoelastic responses. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2018, 474 (2213), 20170540. DOI: 10.1098/rspa.2017.0540. (38) Remache, D.; Caliez, M.; Gratton, M.; Dos Santos, S. The effects of cyclic tensile and stress-relaxation tests on porcine skin. Journal of the Mechanical Behavior of Biomedical Materials 2018, 77, 242-249. DOI: https://doi.org/10.1016/j.jmbbm.2017.09.009. (39) Gadjanski, I.; Spiller, K.; Vunjak-Novakovic, G. Time-Dependent Processes in Stem Cell-Based Tissue Engineering of Articular Cartilage. Stem Cell Reviews and Reports 2012, 8 (3), 863-881. DOI: 10.1007/s12015-011-9328-5. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85412 | - |
| dc.description.abstract | 軟骨是受損後難以自我修復的組織,而選擇一個適當的材料和誘導細胞生長分化的環境可以加速軟骨修復的過程。本研究透過施加外部的電刺激或力學刺激於導電高分子PEDOT:PSS 支架上以加速促進人類脂肪幹細胞進行軟骨分化。與沒有施加刺激的組別做對照,有施加刺激的組別的軟骨特徵基因SOX9、COL2A1的表現量有顯著的上調;在免疫細胞化學螢光染色圖中也觀察到蛋白質SOX9和COL II 在受到刺激之後有較強的螢光訊號,與基因表現的結果趨勢相符。
在力學刺激實驗當中,我們透過模擬的方式將改變材料應變的施力模式量化成支架的應力響應。模擬出的應力響應中,應力峰值會隨著時間逐漸下降而趨近定值,且應力出現負值,說明有拉伸的應力產生。這個量化應力響應的方法將有助於組織工程施加力學刺激實驗中不同材料的施力條件選擇,並且可以根據細胞行為的結果最佳化施加的應力條件。這些研究成果在未來將有助於軟骨修復以及組織工程當中力學刺激的相關研究。 | zh_TW |
| dc.description.abstract | Cartilage is a tissue that is difficult to repair itself after damage, and choosing an appropriate material and an environment that induces cell growth or differentiation could accelerate the process of cartilage repair. In this study, the chondrogenic differentiation of human adipose stem cells (hASCs) was promoted by applying external electrical stimulation (ES) or mechanical stimulation (MS) on the conductive polymer PEDOT:PSS scaffold. Compared with the group without stimulation, the expression levels of chondrogenic characteristic genes, SOX9 and COL2A1, in the stimulation group were significantly up-regulated; SOX9 and COL II proteins were also observed with stronger fluorescent intensity in the immunocytochemistry (ICC) fluorescence staining images, which was consistent with the trend of gene expression results.
In MS experiment, the strain excitation exerted on the scaffold was transformed into stress response by means of simulation. In the simulated stress response, stress peak would gradually decrease with time and approach a constant value, and the negative value of the stress represents the generation of tensile stress. This method of quantifying the stress response could facilitate the selection of applying MS conditions for different materials in tissue engineering, and the applied stress conditions could further be optimized. These findings could contribute to the research on cartilage repair and mechanical stimulation in tissue engineering in the future. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:17Z (GMT). No. of bitstreams: 1 U0001-2007202212525500.pdf: 2566391 bytes, checksum: 4786d6f2a9cf3ae4e9c4cd545c2a4a2d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iv Abstract v Contents vii List of Figures ix List of Tables x List of Equations x Chapter 1 Introduction 1 1.1 Tissue Engineering and Regenerative Medicine 1 1.1.1 Cartilage Tissue Engineering 2 1.1.2 Mechanical Stimulation (MS) in Cartilage Tissue Engineering 3 1.1.3 Electrical Stimulation (ES) in Cartilage Tissue Engineering 4 1.2 Conductive Polymers 4 1.2.1 Conductive Polymer Introduction 4 1.2.2 PEDOT:PSS Scaffold 6 1.3 Motivation and Aims 7 1.4 Research Framework 10 Chapter 2 Material and Methods 11 2.1 Chemicals 11 2.1.1 PEDOT:PSS scaffold 11 2.1.2 Cell Culture 11 2.1.3 Cell differentiation 12 2.1.4 Immunocytochemistry staining 12 2.1.5 RNA isolation 13 2.2 Instruments 13 2.3 Solution Formula 15 2.3.1 Fabrication of PEDOT:PSS scaffold 15 2.3.2 Cell culture 15 2.3.3 Immunocytochemistry (ICC) fluorescence staining 17 2.4 Methods 18 2.4.1 Preparation of the PEDOT:PSS scaffold 18 2.4.2 Cyclic compression loading test of PEDOT:PSS scaffold 18 2.4.3 Stress relaxation test of PEDOT:PSS scaffold 19 2.4.4 Model curve fitting 22 2.4.5 Strain excitation expression 24 2.4.6 Stress response simulation 27 2.4.7 Fabrication of ES device for hASC chondrogenesis 27 2.4.8 Conductivity test 28 2.4.9 Swelling test 29 2.4.10 Cell culture and seeding 29 2.4.11 Cytotoxicity tests 30 2.4.12 Electrical stimulation (ES) for hASC chondrogenesis 32 2.4.13 Mechanical stimulation (MS) for hASC chondrogenesis 32 2.4.14 Immunocytochemistry (ICC) fluorescence staining 34 2.4.15 RNA isolation 34 2.4.16 Quantitative polymerase chain reaction(qPCR) 35 Chapter 3 Results and discussions 36 3.1 Properties of PEDOT:PSS scaffolds 36 3.1.1 Porous structure and swelling behavior of PEDOT:PSS scaffold 37 3.1.2 Mechanical properties of PEDOT:PSS scaffold 40 3.1.3 Conductivity of PEDOT:PSS scaffold 43 3.1.4 Cytotoxicity of PEDOT:PSS scaffold 44 3.2 Stress response simulation 46 3.2.1 Viscoelastic properties of PEDOT:PSS scaffolds 46 3.2.2 Stress Response Simulation 49 3.3 Effect of MS or ES on the chondrogenesis of hASCs in PEDOT:PSS scaffold 54 3.3.1 qPCR 54 3.3.2 Immunocytochemistry (ICC) fluorescence staining 58 Chapter 4 Conclusions and Future Works 60 References 62 | - |
| dc.language.iso | en | - |
| dc.subject | 導電高分子 | zh_TW |
| dc.subject | 軟骨分化 | zh_TW |
| dc.subject | 力學刺激 | zh_TW |
| dc.subject | 電刺激 | zh_TW |
| dc.subject | 人類脂肪幹細胞 | zh_TW |
| dc.subject | 孔洞支架 | zh_TW |
| dc.subject | 導電高分子 | zh_TW |
| dc.subject | 組織工程與再生醫學 | zh_TW |
| dc.subject | 軟骨分化 | zh_TW |
| dc.subject | 力學刺激 | zh_TW |
| dc.subject | 電刺激 | zh_TW |
| dc.subject | 人類脂肪幹細胞 | zh_TW |
| dc.subject | 孔洞支架 | zh_TW |
| dc.subject | 組織工程與再生醫學 | zh_TW |
| dc.subject | chondrogenesis | en |
| dc.subject | Tissue engineering and regenerative medicine | en |
| dc.subject | conductive polymer | en |
| dc.subject | PEDOT:PSS | en |
| dc.subject | porous scaffold | en |
| dc.subject | human adipose-derived stem cell | en |
| dc.subject | electrical stimulation | en |
| dc.subject | mechanical stimulation | en |
| dc.subject | chondrogenesis | en |
| dc.subject | Tissue engineering and regenerative medicine | en |
| dc.subject | conductive polymer | en |
| dc.subject | PEDOT:PSS | en |
| dc.subject | porous scaffold | en |
| dc.subject | human adipose-derived stem cell | en |
| dc.subject | electrical stimulation | en |
| dc.subject | mechanical stimulation | en |
| dc.title | 電刺激或力學刺激施加於導電高分子支架在軟骨組織工程上之應用 | zh_TW |
| dc.title | Electrical or Mechanical Stimulations on Conductive Polymer Scaffold for Cartilage Tissue Engineering | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林哲宇;蕭育生;葉伊純 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Yu Lin;Yu-Sheng Hsiao;Yi-Cheun Yeh | en |
| dc.subject.keyword | 組織工程與再生醫學,導電高分子,孔洞支架,人類脂肪幹細胞,電刺激,力學刺激,軟骨分化, | zh_TW |
| dc.subject.keyword | Tissue engineering and regenerative medicine,conductive polymer,PEDOT:PSS,porous scaffold,human adipose-derived stem cell,electrical stimulation,mechanical stimulation,chondrogenesis, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202201572 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-07-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2027-07-20 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 此日期後於網路公開 2027-07-20 | 2.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
