Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8539
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬鴻文(Hwong-Wen Ma)
dc.contributor.authorYan-Ting Laien
dc.contributor.author賴彥廷zh_TW
dc.date.accessioned2021-05-20T00:56:58Z-
dc.date.available2022-03-01
dc.date.available2021-05-20T00:56:58Z-
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-01-28
dc.identifier.citationABCE. (2017). The Advisory Board for Circular Economy Recommendations for the Danish Government: Advisory Board for Circular Economy.
Allen, D., Davis, S., Halloran, P., Harris, P., Hart, K., Kaduck, J., Sismour, K. (2009). Sustainable materials management: The road ahead. United States Environmental Protection Agency.
Andersson, L. (2004). Taxing raw materials: a qualitative study of the Swedish tax on natural gravel and the Danish tax on raw materials.
APPLE. (2020). Apple 認證整修品保證. Retrieved from: https://www.apple.com/tw/shop/refurbished/about
Bahn-Walkowiak, B., Steger, S. (2015). Resource targets in Europe and worldwide: an overview. Resources, 4(3), 597-620.
Bernd Meyer, M. D., Tim Beringer. (2015). Report about integrated scenario interpretation GINFORS / LPJmL results.
Birchall, J. (2011). Pepsi faces steep input price inflation. Retrieved from: https://www.ft.com/content/bd3aa372-3517-11e0-9810-00144feabdc0
BMK. (2020). Plastic bag ban in Austria as from 2020. Retrieved from: https://www.bmk.gv.at/en/topics/climate-environment/waste-resource-management/plastic-bag.html
Bocken, N. M. P., de Pauw, I., Bakker, C., van der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 308-320.
Bockermann, A., Meyer, B., Omann, I., Spangenberg, J. H. (2005). Modelling sustainability: Comparing an econometric (PANTA RHEI) and a systems dynamics model (SuE). Journal of Policy Modeling, 27(2), 189-210.
Bourguignon, D. (2016). Closing the loop New circular economy package: EPRS.
Bouzaher, A., Sahin, S., Yeldan, E. (2015). HOW TO GO GREEN: a general equilibrium investigation of environmental policies for sustained growth with an application to Turkey’s economy. Letters in Spatial and Resource Sciences, 8(1), 49-76.
Cambridge Econometrics. (2014). Study on modelling of the economic and environmental impacts of raw material consumption European Commission Technical Report 2014-2478.
Cambridge Econometrics. (2018). Presentation:An introduction to FTT:Heat -Simulating the Deep Decarbonisation of Residential Heating.
De Mooij, R. A., Keen, M. M., Parry, I. W. (2012). Fiscal policy to mitigate climate change: a guide for policymakers: International Monetary Fund.
Dinan, T. M. (1993). Economic efficiency effects of alternative policies for reducing waste disposal. Journal of environmental economics and management, 25(3), 242-256.
Distelkamp, M., Meyer, B., Meyer, M. (2010). Quantitative and qualitative effects of a forced resource efficiency strategy: summary report of task 5 within the framework of the' Material efficiency and resource conservation'(MaRess) project.
Eileen O’Leary, D. C., Tadhg Coakley. (2017a). Key Waste Policy Issues in Eight Selected EU Countries, Annex to the Report: Review of Current Priorities and Emerging Issues in European Waste Policy: Environmental Protection Agency.
Eileen O’Leary, D. C., Tadhg Coakley. (2017b). A Review of Current Priorities and Emerging Issues in European Waste Policy: Environmental Protection Agency.
Ekins, P., Pollitt, H., Summerton, P., Chewpreecha, U. (2012). Increasing carbon and material productivity through environmental tax reform. Energy Policy, 42, 365-376.
EMF. (2013). Towards the circular economy:Economic and business rationale for an accelerated transition.
EPA. (2016). United States Food Loss and Waste 2030 Champions. Retrieved from: https://www.epa.gov/sustainable-management-food/united-states-food-loss-and-waste-2030-champions
EU. (2015). Closing the loop - An EU action plan for the Circular Economy. Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614
EU. (2018). Input study on 'How to stimulate secondary raw material markets” Workshop: European Union
Fullerton, D., Wu, W. (1998). Policies for green design. Journal of environmental economics and management, 36(2), 131-148.
Gandenberger, C., Orzanna, R., Klingenfuß, S., Sartorius, C. (2014). The impact of policy interactions on the recycling of plastic packaging waste in Germany: Working Paper Sustainability and Innovation.
Groothuis, F. (2016). New Era. New plan. Europe: A Fiscal Strategy For An Inclusive, Circular Economy.: The Ex’tax Project in cooperation with Cambridge Econometrics, Trucost, Deloitte, EY, KPMG Meijburg and PwC.
Hartley, F., Caetano, T., Daniels, R. C. (2016). The general equilibrium impacts of monetising all waste streams in South Africa. Energy Research Centre, University of Cape Town.
Henderson, H. (1994). Paths to sustainable development: The role of social indicators. Futures, 26(2), 125-137.
Hu, J., Moghayer, S., Reynes, F. (2016). Report about integrated scenario interpretation EXIOMOD/LPJmL results.
Ina MEYER, M. S., Kurt KRATENA. (2017). Recycling of Steel, Aluminum, Paper and Glass and Their Energy-Economic Scope. Retrieved from: http://nachhaltigeswirtschaften-soef.de/sites/default/files/Meyer.pdf.
Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050: The World Bank.
Knobloch, F., Mercure, J.-F., Pollitt, H., Chewpreecha, U., Lewney, R. (2017). A technical analysis of FTT: Heat—a simulation model for technological change in the residential heating sector. European Commission, Directorate-General for Energy.
Lam, A., Lee, S., Mercure, J.-F., Cho, Y., Lin, C.-H., Pollitt, H., . . . Billington, S. (2018). Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model. Sustainability, 10(5), 1612.
Lee, S.-C., Pollitt, H., Fujikawa, K. (2019). Energy, Environmental and Economic Sustainability in East Asia: Policies and Institutional Reforms: Routledge.
Ljunggren Söderman, M., Eriksson, O., Björklund, A., Östblom, G., Ekvall, T., Finnveden, G., . . . Sundqvist, J.-O. (2016). Integrated Economic and Environmental Assessment of Waste Policy Instruments. Sustainability, 8(5), 411.
Masui, T. (2005). Policy evaluations under environmental constraints using a computable general equilibrium model. European Journal of Operational Research, 166(3), 843-855.
McCarthy, A., Dellink, R., Bibas, R. (2018). The Macroeconomics of the Circular Economy Transition.
Mercure, J.-F. (2012). FTT:Power : A global model of the power sector with induced technological change and natural resource depletion. Energy Policy, 48, 799-811.
Mercure, J.-F., Pollitt, H., Edwards, N. R., Holden, P. B., Chewpreecha, U., Salas, P., . . . Vinuales, J. E. (2018). Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy Strategy Reviews, 20, 195-208.
Mercure, J. F. (2015). An age structured demographic theory of technological change. Journal of Evolutionary Economics, 25(4), 787-820.
Mercure, J. F., Pollitt, H., Chewpreecha, U., Salas, P., Foley, A. M., Holden, P. B., Edwards, N. R. (2014). The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector. Energy Policy, 73, 686-700.
Nakamura, S., Kondo, Y. (2002). Input‐output analysis of waste management. Journal of Industrial Ecology, 6(1), 39-63.
Nilsson, M., Zamparutti, T., Petersen, J. E., Nykvist, B., Rudberg, P., McGuinn, J. (2012). Understanding policy coherence: analytical framework and examples of sector–environment policy interactions in the EU. Environmental Policy and Governance, 22(6), 395-423.
OECD. (2018). Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences
OECD. (2020). Policy Instruments for the Environment (PINE) Database. http://oe.cd/pine
Oikonomou, V., Jepma, C. J. (2008). A framework on interactions of climate and energy policy instruments. Mitigation and Adaptation Strategies for Global Change, 13(2), 131-156.
Okushima, S., Yamashita, H. (2005). A general equilibrium analysis of waste management policy in Japan. Hitotsubashi Journal of Economics, 111-134.
Palmer, K. L., Walls, M. (1999). Extended product responsibility: an economic assessment of alternative policies.
Pollitt, H., Barker, A., Barton, J., Pirgmaier, E., Polzin, C., Lutter, S., . . . Stocker, A. (2010). A scoping study on the macroeconomic view of sustainability. Final report for the European Commission, DG Environment, Cambridge Econometrics and Sustainable Europe Research Institute (July 2010).
Rizos, V., Tuokko, K., Behrens, A. (2017). The Circular Economy: A review of definitions, processes and impacts: Centre for European Policy Studies.
Rogers, E. M. (1983). Diffusion of innovations (Third Edition).
Söderholm, P. (2004). Extending the environmental tax base: prerequisites for increased taxation of natural resources and chemical compounds: The Swedish Environmental Protection Agency.
Söderholm, P. (2011). Taxing virgin natural resources: Lessons from aggregates taxation in Europe. Resources, Conservation and Recycling, 55(11), 911-922.
Sahlin, J., Ekvall, T., Bisaillon, M., Sundberg, J. (2007). Introduction of a waste incineration tax: Effects on the Swedish waste flows. Resources, Conservation and Recycling, 51(4), 827-846.
Schoolderman, H., Mathlener, R. (2011). Minerals and metals scarcity in manufacturing: the ticking time bomb
Scottish Government. (2013). Landfill Tax (Scotland) Bill: Final Business and Regulatory Impact Assessment.
Seely, A. (2009). Landfill tax: introduction early history. UK: House of Commons Library.
SOU. (2002). Skatt på avfall idag–och i framtiden (Taxation on waste today and in the future) (in Swedish): Swedish Government Official Reports.
UNEP. (2017). Resource Efficiency: Potential and Economic Implications. A report of the International Resource Panel: United Nations Environment Programme (UNEP).
UNFCCC secretariat. (2020). Integrated Assessment Models (IAMs) and Energy-Environment-Economy (E3) models. Retrieved from: https://unfccc.int/topics/mitigation/workstreams/response-measures/integrated-assessment-models-iams-and-energy-environment-economy-e3-models#eq-29
United Nations, D. o. E. a. S. A. (2019). World Population Prospects 2019: Highlights.
Winning, M., Calzadilla, A., Bleischwitz, R., Nechifor, V. (2017). Towards a circular economy: insights based on the development of the global ENGAGE-materials model and evidence for the iron and steel industry. International Economics and Economic Policy, 14(3), 383-407.
Withana, S., ten Brink, P., Illes, A., Nanni, S., Watkins, E. (2014). Environmental tax reform in Europe: Opportunities for the future final report. Institute for European Environmental Policy, Brussels.
WU-Vienna, CSIRO. (2020). (Internet). http://www.materialflows.net/
大豐環保研發中心. (2019). 世界第1支再生塑膠押頭來自台灣!大豐x歐萊德共創新里程碑. Retrieved from: https://blog.zerozero.com.tw/26885/recycling-indenter-of-oright/
大豐環保科技. (2020). 塑膠再生產品優勢、流程、及再生塑料的應用. Retrieved from: https://www.df-recycle.com/recycled_plastic/
中技社. (2015). 循環經濟的發展趨勢與關鍵議題.
中技社. (2017). 永續循環經濟觀念案例分享.
中技社. (2018). 循環經濟系列叢書第一冊 總論.
日本環境省. (2017). 第三次循環型社会形成推進基本計画の進捗状況の第3回点検結果の概要.
王塗發, 楊浩彥, 林幸君, 賴金端. (2020). 投入產出分析: 理論與實務: 財團法人台灣經濟研究院.
江佳芸. (2019). 電動車政策與能源政策之環境綜效評估. 國立臺灣大學.
行政院主計總處. (2019). 國民所得統計年報.
行政院主計總處. (2020a). 105年產業關聯表.
行政院主計總處. (2020b). 105年產業關聯統計編製報告.
行政院環境保護署. (2017). 106年環境保護統計年報.
行政院環境保護署. (2020). 環保統計查詢網. https://stat.epa.gov.tw/
李昀晟. (2019). 產業朝循環經濟商業模式轉型對我國資源利用及經濟之效益評估-以共享汽車為例. 國立臺灣大學.
侯乃華. (2019). 廢棄漁網回收製成紡織品對於紡織產業轉型之評估. 國立臺灣大學.
楊浩彥. (2017). 政策評估:多部門分析法.
經濟部統計處. 常用經濟統計用語解釋. Retrieved from https://www.moea.gov.tw/Mns/populace/content/ContentMenu.aspx?menu_id=12943.
廖孟儀. (2015). 廢棄物投入產出評估台灣推動二次銅循環再利用之研究. 國立臺灣大學.
蕭明瑜. (2016). 台灣廢鋼資源循環的環境影響. 國立臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8539-
dc.description.abstract  為了應對未來資源稀缺之趨勢,及經濟活動產生之廢棄物總量逐年增長的問題,循環經濟的做法提供了產業界革新轉型的可能性,透過將廢棄物投入再利用產業,使其再生為二次物料回到經濟體系中,不僅有助於減緩自然資源的開採速度,也可能創造更大的經濟價值。而在政策方面,許多國家陸續提出更加嚴格的廢棄物減量及回收目標,期待透過掩埋稅、焚化稅、再利用技術補貼、物料稅等相關政策之刺激,降低產業界選擇掩埋技術及焚化技術的意願,甚至願意選擇再利用技術將更多廢棄物重生為二次物料,以提升二次物料市場的活絡程度。
  為了提供決策者關於資源稀缺、循環經濟、永續發展等重要議題的政策建議,許多國家運用整合性評估模型量化政策對於經濟、環境、社會等多層面的影響,並嘗試釐清政策加乘性、產業連動關係等政策評估之難題。然而,當前廣為使用的大型整合性評估模型較少涵蓋不同廢棄物處理方式之評估,對於一次物料與二次物料間的競爭關係也甚少提及,整體而言,此類評估模型在物料競爭層面的探討仍有許多發展空間。
  因此,本研究以技術競爭模型(FTT-Waste),搭配廢棄物投入產出模型(WIO)及經濟模型(CGE),建立一套二次物料競爭模型,以廢塑膠為例,探討各政策情境如何影響不同廢棄物處理技術間的競爭關係,以及量化當二次塑膠原料進入市場後,一次塑膠原料產業與二次塑膠原料產業的競爭情形,及其對總體經濟及其他個別產業的影響。
  研究結果顯示,政策情境的差異將影響臺灣廢棄物處理技術之未來發展趨勢,其中,在不施行任何掩埋稅、焚化稅、再利用補貼等政策的基線情境下,未來掩埋技術之市佔率持續處於低點、焚化技術之市佔率擁有絕對優勢,而再利用技術則在未來的市場發展中逐漸退場;但在本研究提出之最佳廢棄物政策組合情境中,可透過政策加乘的效果,達到「提高再利用技術的市場佔有率」及「降低掩埋技術及焚化技術的市場佔有率」兩項目標。接續上述結果,在使用了物料稅的最佳政策組合情境中,二次塑膠原料產業之規模大幅增加、一次塑膠原料產業之規模則相對縮減,顯示二次塑膠原料在市場中更具競爭力,且市場對一次塑膠原料的需求下降,此外,該政策情境之實施,不僅因為產業連動效果影響了電子零組件、基本金屬等其他產業,更對總體經濟造成負面影響(GDP下降),但值得注意的是,整體資源效率有所提升,表示國家有能力用相同的資源量達到更大的經濟成果。
  整體而言,本研究建立之二次物料競爭模型模擬結果顯示,若是塑膠廢棄物的流向不再只有傳統的掩埋場及焚化廠,而是透過再利用技術將廢棄物重新導入市場中,不僅能使整體資源使用效率有所提升,更能為廢棄物找到新價值,例如:二次塑膠原料產業的發展。
zh_TW
dc.description.abstract  In order to cope with the resource scarcity issues and the problem of increasing waste generated by economic activities, the circular economy approach provides the opportunity for industry transformation. By recycling, the waste can be turned into secondary materials, and then be reintroduced into the production system. This may not only slow down the exploitation of natural resources but create additional economic value. In terms of government policies, many countries have gradually proposed more stringent waste reduction and material recycling targets. And environmental policies such as landfill tax, incineration tax, recycling subsidy and material tax, have also been implemented to encourage waste recycling and reduce waste that is sent to landfill and incinerator.
  In order to provide policy makers with effective recommendations on important issues such as resource scarcity, circular economy, and sustainable development, many countries use Integrated Assessment Models (IAMs) to evaluate and quantify the impact of policies on economy, environment, and society, and also try to clarify the problems on policy synergy and interrelationships among industries. However, assessments of waste managements or competition between primary and secondary materials are poorly represented in the majority of quantitative models.
  Therefore, this research establishes a set of “Secondary Material Competition model” comprised of the technology competition model (FTT-Waste), the waste input-output model (WIO), and the economic model (CGE). The Secondary Material Competition model is applied to explore how various policy scenarios affect the competition between different waste managements, and then evaluate the competition between primary and secondary plastic materials, macro-economic effect, and the interrelationships among individual industries.
  The results show that different policy scenarios will affect future waste management patterns in Taiwan. For example, in the baseline scenario, the market share of landfill technology will remain at a great disadvantage, and the market share of incineration technology will have an absolute advantage in market competition, while the recycling technology will gradually withdraw in the future. However, in the optimum waste management scenario proposed in this research, the two goals of 'increasing the market share of recycling technology' and 'reducing the market share of landfill and incineration technology' can both be achieved.
  Besides, in the optimum policy scenario, the scale of the secondary plastic material industry will increase significantly, while the scale of the primary plastic material industry will relatively decrease, showing that secondary plastic materials are more competitive in the market and the demand for primary plastic materials has declined. In addition, the implementation of this policy scenario not only affects other industries such as electronic parts and components sector and basic metals sector, but has a negative impact on macro-economic output (GDP decline). However, it is worth mentioning that the overall resource efficiency is improved.
  In conclusion, the simulation results provided by the “Secondary Material Competition model” suggest that plastic waste should be turned into secondary materials and be reintroduced into the production system, instead of disposal to landfill or incineration. This will not only improve the overall resource efficiency, but create new value for plastic waste, such as the development of the secondary plastic material industry.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:56:58Z (GMT). No. of bitstreams: 1
U0001-2801202118243000.pdf: 4218913 bytes, checksum: 08d58fb5590d882cb9e92f0ef80a27aa (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 viii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的與架構 3
第二章 文獻回顧 5
2.1 未來資源稀缺對產業之風險 6
2.2 因應資源稀缺的解決方法 12
2.2.1循環經濟策略 12
2.2.2廢棄物減量與回收目標 13
2.2.3 促進廢棄物回收再利用之政策 17
2.3 政策及評估之難題 25
2.3.1 政策加乘性及產業連動關係 25
2.3.2 整合性評估模型 28
第三章 研究方法 32
3.1 二次物料競爭模型之建構方法 32
3.2 技術競爭模型 33
3.2.1 FTT模型之發展背景 33
3.2.2 技術競爭模型FTT-Waste 35
3.3 廢棄物投入產出模型 47
3.3.1 WIO模型簡介 47
3.3.2 廢塑膠WIO模型 47
3.4 經濟模型 51
3.4.1 CGE模型簡介 51
3.4.2 社會會計矩陣(SAM表)之編制 53
3.4.3 CGE經濟數學模型 57
第四章 結果與討論 64
4.1 政策對未來技術競爭之時間序列分析 65
4.1.1 單一政策之時間序列分析 65
4.1.2 政策加乘性下之未來技術競爭 77
4.1.3 政策強度變化於時間序列之呈現 83
4.2 混合性政策下的物料競爭結果 86
4.2.1 對一次塑膠原料產業及二次塑膠原料產業之影響 88
4.2.2 對總體經濟與產業連動效果之影響 89
第五章 結論與建議 95
5.1 結論 95
5.2 建議 97
第六章 參考文獻 99
dc.language.isozh-TW
dc.title二次物料競爭模型建立之研究-以廢塑膠為例zh_TW
dc.titleThe Research on Secondary Material Competition Modeling-Take Plastic Waste as an Exampleen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李公哲(Kung-Che Li),楊浩彥(Hao-Yen Yang)
dc.subject.keyword物料競爭,技術競爭,二次塑膠原料,FTT-Waste 模型,CGE模型,zh_TW
dc.subject.keywordMaterial Competition,Technology Competition,Secondary Plastic Material,FTT-Waste Model,CGE Model,en
dc.relation.page106
dc.identifier.doi10.6342/NTU202100236
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-01-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2801202118243000.pdf4.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved