Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85391
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達zh_TW
dc.contributor.advisorGuin-Dar Linen
dc.contributor.author林宥成zh_TW
dc.contributor.authorYu-Chen Linen
dc.date.accessioned2023-03-19T23:16:04Z-
dc.date.available2023-12-27-
dc.date.copyright2022-08-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationM. Kjaergaard, M. E. Schwartz, J. BraumÃijller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state of play,” Annual Review of Condensed Matter Physics, vol. 11, pp. 369–395, mar 2020.
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the cooper pair box,” Physical Review A, vol. 76, p. 042319, oct 2007.
A. H. Kiilerich and K. Mølmer, “Quantum interactions with pulses of radiation,”Physical Review A, vol. 102, p. 023717, aug 2020.
H. J. Kimble, “The quantum internet,” Nature, vol. 453, pp. 1023–1030, jun 2008.
S. Pirandola and S. L. Braunstein, “Physics: Unite to build a quantum internet,”Nature, vol. 532, pp. 169–171, apr 2016.
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, oct 2018.
D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. Kennedy, and A. Kuzmich, “Light-matter interface in quantum networks,” in 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, IEEE, 2006.
D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science, vol. 306, pp. 663–666, oct 2004.
E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel,“Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Physical Review Letters, vol. 104, p. 203603, may 2010.
S. Zhang, C. Liu, S. Zhou, C.-S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Physical Review Letters, vol. 109, p. 263601, dec 2012.
S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, “An efficient quantum light–matter interface with sub-second lifetime,” Nature Photonics, vol. 10, pp. 381– 384, apr 2016.
H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature, vol. 456, pp. 773–777, dec 2008.
I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nature Communications, vol. 1, apr 2010.
J. Smith, J. Monroy-Ruz, J. G. Rarity, and K. C. Balram, “Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride,” Applied Physics Letters, vol. 116, p. 134001, mar 2020.
A. E. Rugar, S. Aghaeimeibodi, D. Riedel, C. Dory, H. Lu, P. J. McQuade, Z.-X. Shen, N. A. Melosh, and J. Vuˇckovi´c, “Quantum photonic interface for tin-vacancy centers in diamond,” Physical Review X, vol. 11, p. 031021, jul 2021.
A. Delteil, Z. Sun, S. FÃd’lt, and A. Imamo˘glu, “Realization of a cascaded quantum system: Heralded absorption of a single photon qubit by a single-electron charged quantum dot,” Physical Review Letters, vol. 118, p. 177401, apr 2017.
R. Uppu, L. Midolo, X. Zhou, J. Carolan, and P. Lodahl, “Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology,” Nature Nanotechnology, vol. 16, pp. 1308–1317, oct 2021.
M. Stobi´nska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” EPL (Europhysics Letters), vol. 86, p. 14007, apr 2009.
M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nature Physics, vol. 4, pp. 924–927, oct 2008.
Y. Wang, J. Mináˇr, L. Sheridan, and V. Scarani, “Efficient excitation of a twolevel atom by a single photon in a propagating mode,” Physical Review A, vol. 83, p. 063842, jun 2011.
S. A. Aljunid, G. Maslennikov, Y. Wang, H. L. Dao, V. Scarani, and C. Kurtsiefer, “Excitation of a single atom with exponentially rising light pulses,” Physical Review Letters, vol. 111, p. 103001, sep 2013.
V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nature Communications, vol. 7, nov 2016.
J. Wenner, Y. Yin, Y. Chen, R. Barends, B. Chiaro, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, C. Neill, P. O’Malley, P. Roushan, D. Sank, A. Vainsencher, T. White, A. N. Korotkov, A. Cleland, and J. M. Martinis, “Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency,” Physical Review Letters, vol. 112, p. 210501, may 2014.
W. J. Lin, Y. Lu, P. Y. Wen, Y. T. Cheng, C. P. Lee, K. T. Lin, K. H. Chiang, M. C. Hsieh, J. C. Chen, C. S. Chuu, F. Nori, A. F. Kockum, G. D. Lin, P. Delsing, and I. C. Hoi, “Deterministic loading and phase shaping of microwaves onto a single artificial atom,” 2020.
A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science, vol. 342, pp. 1494–1496, dec 2013.
Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang, H. Liu, M.-Y. Zheng, X.-P. Xie, W.-J. Zhang, L.-X. You, Z. Wang, T.-Y. Chen, Q. Zhang, X.-H. Bao, and J.-W. Pan, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, pp. 240–245, feb 2020.
R. H. Dicke, “Coherence in spontaneous radiation processes,” Physical Review, vol. 93, pp. 99–110, jan 1954.
R. H. Lehmberg, “Radiation from anN-atom system. i. general formalism,” Physical Review A, vol. 2, pp. 883–888, sep 1970.
M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Physics Reports, vol. 93, pp. 301–396, dec 1982.
X. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Physics Reports, vol. 718-719, pp. 1–102, nov 2017.
Z. Liao, Y. Lu, and M. S. Zubairy, “Multiphoton pulses interacting with multiple emitters in a one-dimensional waveguide,” Physical Review A, vol. 102, p. 053702, nov 2020.
B. Vermersch, P.-O. Guimond, H. Pichler, and P. Zoller, “Quantum state transfer via noisy photonic and phononic waveguides,” Physical Review Letters, vol. 118, p. 133601, mar 2017.
M.-A. Lemonde, S. Meesala, A. Sipahigil, M. Schuetz, M. Lukin, M. Loncar, and P. Rabl, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Physical Review Letters, vol. 120, p. 213603, may 2018.
C. Song, K. Xu, W. Liu, C. ping Yang, S.-B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y.-A. Chen, C.- Y. Lu, S. Han, and J.-W. Pan, “10-qubit entanglement and parallel logic operations with a superconducting circuit,” Physical Review Letters, vol. 119, p. 180511, nov 2017.
C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D.-W. Wang, H. Wang, and S.-Y. Zhu, “Generation of multicomponent atomic schrÃ˝udinger cat states of up to 20 qubits,” Science, vol. 365, pp. 574–577, aug 2019.
H.-S. Zhong, Y. Li, W. Li, L.-C. Peng, Z.-E. Su, Y. Hu, Y.-M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X.-L. Wang, X. Jiang, L. Li, Y.-A. Chen, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Physical Review Letters, vol. 121, p. 250505, dec 2018.
Z. Liao and M. S. Zubairy, “Quantum state preparation by a shaped photon pulse in a one-dimensional continuum,” Physical Review A, vol. 98, p. 023815, aug 2018.
M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of Modern Physics, vol. 81, pp. 865–942, jun 2009.
V. Vedral, “Quantum entanglement,” Nature Physics, vol. 10, pp. 256–258, apr 2014.
T. Tufarelli, F. Ciccarello, and M. S. Kim, “Dynamics of spontaneous emission in a single-end photonic waveguide,” Physical Review A, vol. 87, p. 013820, jan 2013.
K. Sinha, P. Meystre, E. A. Goldschmidt, F. K. Fatemi, S. Rolston, and P. Solano, “Non-markovian collective emission from macroscopically separated emitters,” Physical Review Letters, vol. 124, p. 043603, jan 2020. 95
J. Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature, vol. 474, pp. 589–597, jun 2011.
P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer's guide to superconducting qubits,” Applied Physics Reviews, vol. 6, p. 021318, jun 2019.
H.-L. Huang, D. Wu, D. Fan, and X. Zhu, “Superconducting quantum computing: a review,” Science China Information Sciences, vol. 63, no. 8, pp. 1–32, 2020.
A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Physical Review A, vol. 69, p. 062320, jun 2004.
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature, vol. 431, pp. 162–167, sep 2004.
C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical casimir effect in a superconducting circuit,” Nature, vol. 479, pp. 376–379, nov 2011.
J. M. Martinis, S. Boixo, H. Neven, F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà ˘a, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, and A. Zalcman, “Quantum supremacy using a programmable superconducting processor,” 2019.
J. Chow, O. Dial, and J. Gambetta, “Ibm quantum breaks the 100-qubit processor barrier,” IBM Research Blog, 2021.
Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H.-L. Huang, Y.-H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, C.-Y. Lu, C.-Z. Peng, X. Zhu, and J.-W. Pan, “Quantum computational advantage via 60-qubit 24-cycle random circuit sampling,” 2021.
E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical Review, vol. 40, pp. 749–759, jun 1932.
C. Gerry, P. Knight, and C. C. Gerry, Introductory Quantum Optics. Cambridge University Press, June 2010.
W. B. Case, “Wigner functions and weyl transforms for pedestrians,” American Journal of Physics, vol. 76, pp. 937–946, oct 2008.
J. ichi Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative wigner function,” Physical Review X, vol. 3, p. 041028, dec 2013.
D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Physical Review Letters, vol. 70, pp. 1244–1247, mar 1993.
K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Physical Review A, vol. 40, pp. 2847–2849, sep 1989.
C. Eichler, D. Bozyigit, and A. Wallraff, “Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors,” Physical Review A, vol. 86, p. 032106, sep 2012.
K.-T. Lin, T. Hsu, C.-Y. Lee, I.-C. Hoi, and G.-D. Lin, “Scalable collective lamb shift of a 1d superconducting qubit array in front of a mirror,” Scientific Reports, vol. 9, dec 2019.
P. Wen, K.-T. Lin, A. Kockum, B. Suri, H. Ian, J. Chen, S. Mao, C. Chiu, P. Delsing, F. Nori, G.-D. Lin, and I.-C. Hoi, “Large collective lamb shift of two distant superconducting artificial atoms,” Physical Review Letters, vol. 123, p. 233602, dec 2019.
K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd, “Continuum fields in quantum optics,” Physical Review A, vol. 42, pp. 4102–4114, oct 1990.
I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front of a mirror,” Nature Physics, vol. 11, pp. 1045–1049, sep 2015.
H. Z. Shen, M. Qin, and X. X. Yi, “Single-photon storing in coupled non-markovian atom-cavity system,” Physical Review A, vol. 88, p. 033835, sep 2013.
M. Scully and M. Zubairy, Quantum Optics. Quantum Optics, Cambridge University Press, 1997.
C. Zhou, Z. Liao, and M. S. Zubairy, “Decay of a single photon in a cavity with atomic mirrors,” Physical Review A, vol. 105, p. 033705, mar 2022.
B. Peropadre, J. Lindkvist, I.-C. Hoi, C. M. Wilson, J. J. Garcia-Ripoll, P. Delsing, and G. Johansson, “Scattering of coherent states on a single artificial atom,” New Journal of Physics, vol. 15, p. 035009, mar 2013.
A. F. Kockum, M. Sandberg, M. R. Vissers, J. Gao, G. Johansson, and D. P. Pappas, “Detailed modelling of the susceptibility of a thermally populated, strongly driven circuit-QED system,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 46, p. 224014, nov 2013.
C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Physical Review A, vol. 31, pp. 3761–3774, jun 1985.
K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff, and A. Blais, “Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms,” Physical Review A, vol. 88, p. 043806, oct 2013.
I. Strandberg, Y. Lu, F. Quijandría, and G. Johansson, “Numerical study of wigner negativity in one-dimensional steady-state resonance fluorescence,” Physical Review A, vol. 100, p. 063808, dec 2019.
Y. Lu, I. Strandberg, F. Quijandría, G. Johansson, S. Gasparinetti, and P. Delsing, “Propagating wigner-negative states generated from the steady-state emission of a superconducting qubit,” Physical Review Letters, vol. 126, p. 253602, jun 2021.
A. H. Kiilerich and K. Mølmer, “Input-output theory with quantum pulses,” Physical Review Letters, vol. 123, p. 123604, sep 2019.
J. Combes, J. Kerckhoff, and M. Sarovar, “The slh framework for modeling quantum input-output networks,” 2016.
J. Johansson, P. Nation, and F. Nori, “QuTiP: An open-source python framework for the dynamics of open quantum systems,” Computer Physics Communications, vol. 183, pp. 1760–1772, aug 2012.
J. Johansson, P. Nation, and F. Nori, “QuTiP 2: A python framework for the dynamics of open quantum systems,” Computer Physics Communications, vol. 184, pp. 1234–1240, apr 2013.
P. J. J. O’Malley, Superconducting qubits: dephasing and quantum chemistry. University of California, Santa Barbara, 2016.
A. E. B. Nielsen and K. Mølmer, “Single-photon-state generation from a continuouswave nondegenerate optical parametric oscillator,” Physical Review A, vol. 75, p. 023806, feb 2007.
B. Lemberger and K. Mølmer, “Radiation eigenmodes of dicke superradiance,” Physical Review A, vol. 103, p. 033713, mar 2021.
P. Z. Crispin Gardiner, Quantum Noise. Springer Berlin Heidelberg, Aug. 2004.
T. Tufarelli, M. S. Kim, and F. Ciccarello, “Non-markovianity of a quantum emitter in front of a mirror,” Physical Review A, vol. 90, p. 012113, jul 2014.
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Advances in Computational Mathematics, vol. 5, pp. 329–359, dec 1996.
K. Koshino, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, Z. Wang, and Y. Nakamura, “Observation of the three-state dressed states in circuit quantum electrodynamics,” Physical Review Letters, vol. 110, p. 263601, jun 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85391-
dc.description.abstract對量子多體物理的瞭解為發展量子科技打下厚實的基礎,例如量子計算、量子通訊、量子量測和量子模擬。在這之中,高保真度技術如多體量子態斷層掃描和長距離量子糾纏生成對實現大規模量子計算是很重要的一環。本論文在一種電路量子電動力學系統: transmon線性原子陣列耦合到一維半無限長傳輸線,去探討多體物理的問題。我們提出使用相空間量,維格納函數,去幫助我們觀測多體量子態。相較於每個量子位元需要獨立去讀出量子態的傳統量測,我們的方案只需要去量測單一集體放光光子,即可推估多體量子態。我們也有討論量子去相干所造成的誤差。此外,我們也從時間返演的角度,研究如何分配量子糾纏,這邊我們透過注入具有自發放射反轉波形的光子去糾纏兩顆遠距離量子位元,即使納入兩顆遠距離量子位元間的時間延遲效應,我們也能去完美產生量子糾纏態。最後,我們去探討 transmon原子高能階所造成的影響,這邊我們打入一個很強的電磁場去把transmon原子激發到高能階,再用一個很弱的電磁場去探測。我們發現在特定參數下,反射信號會有放大的現象,這邊我們發展一套使用拉比邊帶的理論去詮釋,我們的數值結果和實驗很吻合。我們的研究不僅能更加瞭解量子多體物理,也對量子控制和量子光學元件的發展有潛在應用。zh_TW
dc.description.abstractA profound understanding of quantum many-body physics lays the foundation for developing a wide range of quantum technologies, including quantum computing, quantum communication, quantum metrology, and quantum simulation. In particular, high-fidelity techniques such as tomography of many-body states and distant entanglement generation are the key ingredients to realize large-scale quantum computation. In this work, we investigate the many-body physics implemented on the circuit QED system, where a linear array of transmons are coupled to a 1D semi-infinite transmission line. We propose a novel scheme to observe the many-body atomic states from the phase space perspective, Wigner function. Compared to the traditional measurements in which the states of each qubit are required to be readout individually, our scheme offers a simple way to infer the many-body states from the collectively emitted photon. Error sources such as the pure dephasing process have been discussed. Also, we study how to distribute quantum entanglement via the concept of time-reversal symmetry, where an input photon, whose temporal profile is the reversal of spontaneous emission, is injected to entangle two distant qubits. We demonstrate that even when the interqubit distance is large such that the time-delay effects play an important role, the desired entangled states can still be generated perfectly. Finally, we explore the multiple-level structures of the transmons, going beyond the two-level model. The higher-level effects are revealed when the transmon is strongly driven and probed by another weak tone. We find that the reflected signals are amplified for certain parameters, which can be explained by our theory regarding of Rabi sidebands. The numerical results coincide well with the experimental results. Our study provides not only a comprehensive understanding of quantum many-body physics, but also potential applications for quantum control and quantum optical devices.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:04Z (GMT). No. of bitstreams: 1
U0001-1807202212013900.pdf: 4684584 bytes, checksum: 5b47e38fd6848fd01dbd744d549853ae (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsCertificate of thesis approval from the oral defense committee i
Acknowledgement v
Abstract (Mandarin) vii
Abstract (English) ix
Table of contents xiii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Superconducting atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Superradiance and dipole-dipole interaction . . . . . . . . . . . . . . . . 5
1.4 Wigner function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Model and Methodology 11
2.1 Hamiltonian and equations of motion . . . . . . . . . . . . . . . . . . . 11
2.1.1 Single-photon pulse: Shrodinger’s equation approach . . . . . . . 12
2.1.2 Higher-level dipole-dipole interaction: master equation approach 17
2.2 Input-output formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Single-photon output pulse: mode selection . . . . . . . . . . . . . . . . 20
3 Phase space perspective for an efficient single-photon loading on the qubit array 25
3.1 Preparation of a singly-excited many-particle state . . . . . . . . . . . . 25
3.1.1 Emission spectrum of the singly-excited state . . . . . . . . . . . 26
3.1.2 Emission profile of the target state . . . . . . . . . . . . . . . . . 27
3.1.3 Time-reversal waveform for the target state preparation . . . . . 28
3.2 Phase space perspective for the state preparation: Wigner functions . . . 28
3.2.1 Two-qubit system . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Effect of the pure dephasing process . . . . . . . . . . . . . . . 30
3.2.3 Distinguishability of different singly-excited states . . . . . . . . 31
3.2.4 Coherent state vs. Fock state . . . . . . . . . . . . . . . . . . . . 32
3.3 Radiation eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Quantum entanglement distribution for two distant qubits 37
4.1 Single atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1 Dynamics of the spontaneous emission . . . . . . . . . . . . . . 37
4.1.2 Lambert W function and series solution . . . . . . . . . . . . . . 39
4.2 Two atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Time-delay effect on the dipole-dipole interaction . . . . . . . . . 43
4.2.2 Long-range entangled state preparation . . . . . . . . . . . . . . 44
5 Reflected signal amplification for a strongly driven transmon 49
5.1 Perturbative expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Reflection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Rabi sidebands and dressed states . . . . . . . . . . . . . . . . . . . . . 52
5.3.1 Single-sideband theory . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Double-sideband theory . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Comparison between the experiments and simulations . . . . . . . . . . 58
5.5 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.1 Single-sideband amplification with dressed-state population inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.2 Double-sideband amplification with dressed-state atomic coherence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.3 Double-sideband amplification with M12(21) enhancement . . . . 64
5.5.4 Summary of the amplification mechanism . . . . . . . . . . . . . 66
6 Conclusion 67
A Appendix 71
A.1 Virtual-cavity method for the multi-qubit system . . . . . . . . . . . . . 71
A.1.1 Cascaded-cavity model . . . . . . . . . . . . . . . . . . . . . . 71
A.1.2 Virtual-cavity method . . . . . . . . . . . . . . . . . . . . . . . 74
A.2 Master equation of a single multilevel atom . . . . . . . . . . . . . . . . 75
A.2.1 Hamiltonian and master equation . . . . . . . . . . . . . . . . . 75
A.2.2 Driving field and probing field . . . . . . . . . . . . . . . . . . . 82
A.3 Optical Bloch equations of the dressed states . . . . . . . . . . . . . . . 83
A.4 Reflection coefficient under the weakly driving field . . . . . . . . . . . 85
A.5 Rest of simulations for two-tone amplification . . . . . . . . . . . . . . 87
A.6 Inverse matrix method . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Bibliography 91
-
dc.language.isozh_TW-
dc.subject信號放大zh_TW
dc.subject糾纏態製備zh_TW
dc.subject信號放大zh_TW
dc.subject維格納函數zh_TW
dc.subject糾纏態製備zh_TW
dc.subject維格納函數zh_TW
dc.subjectsignal amplificationen
dc.subjectWigner functionen
dc.subjectentangled state preparationen
dc.subjectsignal amplificationen
dc.subjectWigner functionen
dc.subjectentangled state preparationen
dc.title相空間觀點、糾纏態分配與反射信號放大於超導原子陣列在一維半無限長波導量子電動力學系統zh_TW
dc.titlePhase space perspective, entanglement distribution, and reflected signal amplification for a superconducting atomic array in a 1D semi-infinite waveguide QED systemen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許耀銓;林晏詳zh_TW
dc.contributor.oralexamcommitteeIoChun Hoi;Yen-Hsiang Linen
dc.subject.keyword維格納函數,糾纏態製備,信號放大,zh_TW
dc.subject.keywordWigner function,entangled state preparation,signal amplification,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202201523-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-07-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2024-07-22-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf4.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved