Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8538
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德(Ta-Te Lin)
dc.contributor.authorDan Jeric Arcega Rustiaen
dc.contributor.author羅傑瑞zh_TW
dc.date.accessioned2021-05-20T00:56:56Z-
dc.date.available2024-01-01
dc.date.available2021-05-20T00:56:56Z-
dc.date.copyright2021-03-05
dc.date.issued2021
dc.date.submitted2021-02-01
dc.identifier.citationAbadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, Savannah, Georgia, USA.
Amorim, W. P., Tetila, E. C., Pistori, H., Papa, J. P. (2019). Semi-supervised learning with convolutional neural networks for UAV images automatic recognition. Computers and Electronics in Agriculture, 164, 104932. https://doi.org/10.1016/j.compag.2019.104932
Atakan, E., Canhilal, R. (2004). Evaluation of yellow sticky traps at various heights for monitoring cotton insect pests. Journal of Agricultural and Urban Entomology, 21, 15-24.
Barbedo, J. G. A. (2014). Using digital image processing for counting whiteflies on soybean leaves. Journal of Asia-Pacific Entomology, 17(4), 685-694. https://doi.org/10.1016/j.aspen.2014.06.014
Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., . . . Sattin, M. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4), 1199-1215. https://doi.org/10.1007/s13593-015-0327-9
Baucum, M., Belotto, D., Jeannet, S., Savage, E., Mupparaju, P., Morato, C. W. (2017). Semi-supervised deep continuous learning. In: Proceedings of the 2017 International Conference on Deep Learning Technologies, Chengdu, China. https://doi.org/10.1145/3094243.3094247
Bendale, A., Boult, T. E. (2016). Towards open set deep networks. In: Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, United States.
Böckmann, E., Hommes, M., Meyhöfer, R. (2015). Yellow traps reloaded: What is the benefit for decision making in practice? Journal of Pest Science, 88(2), 439-449. https://doi.org/10.1007/s10340-014-0601-7
Böckmann, E., Meyhöfer, R. (2017). Sticky trap monitoring of a pest–predator system in glasshouse tomato crops: Are available trap colours sufficient? Journal of Applied Entomology, 141(5), 339-351. https://doi.org/10.1111/jen.12338
Bonsignore, C. P. (2015). Effect of environmental factors on the flight activity of Trialeurodes vaporariorum (Westwood) under greenhouse conditions. Entomological Science, 18(2), 207-216. https://doi.org/10.1111/ens.12097
Bradski, G. (2000). The OpenCV library. Dr. Bobb's Journal of Software Tools.
Burr, T., Hamada, M. S., Howell, J., Skurikhin, M., Ticknor, L., Weaver, B. (2013). Estimating alarm thresholds for process monitoring data under different assumptions about the data generating mechanism. Science and Technology of Nuclear Installations, 2013, 705878. https://doi.org/10.1155/2013/705878
Butler, G. D., Rimon, D., Henneberry, T. J. (1988). Bemisia tabaci (Homoptera: Aleyrodidae): Populations on different cotton varieties and cotton stickiness in Israel. Crop Protection, 7(1), 43-47. https://doi.org/10.1016/0261-2194(88)90037-3
Cai, D., Chen, K., Qian, Y., Kämäräinen, J.-K. (2019a). Convolutional low-resolution fine-grained classification. Pattern Recognition Letters, 119, 166-171. https://doi.org/10.1016/j.patrec.2017.10.020
Cai, J., Xiao, D., Lv, L., Ye, Y. (2019b). An early warning model for vegetable pests based on multidimensional data. Computers and Electronics in Agriculture, 156, 217-226. https://doi.org/10.1016/j.compag.2018.11.019
Canziani, A., Paszke, A., Culurciello, E. (2016). An analysis of deep neural network models for practical applications. arXiv, abs/1605.07678.
Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D. (2019). Self-supervised learning for medical image analysis using image context restoration. Medical Image Analysis, 58, 101539. https://doi.org/10.1016/j.media.2019.101539
Chevalier, M., Thome, N., Cord, M., Fournier, J., Henaff, G., Dusch, E. (2016). Low resolution convolutional neural network for automatic target recognition. In: 7th International Symposium on Optronics in Defence and Security, Paris, France. https://hal.archives-ouvertes.fr/hal-01332061
Cho, J., Choi, J., Qiao, M., Ji, C. W., Kim, H. Y., Uhm, K. B., Chon, T. S. (2007). Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis. International Journal of Mathematics and Computers in Simulation, 1, 46-53.
Chu, C.-C., Jackson, C. G., Alexander, P. J., Karut, K., Henneberry, T. J. (2003). Plastic cup traps equipped with light-emitting diodes for monitoring adult Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 96(3), 543-546. https://doi.org/10.1603/0022-0493-96.3.543
Cohen, Y., Cohen, A., Hetzroni, A., Alchanatis, V., Broday, D., Gazit, Y., Timar, D. (2008). Spatial decision support system for Medfly control in citrus. Computers and Electronics in Agriculture, 62(2), 107-117. https://doi.org/10.1016/j.compag.2007.12.005
Csizinszky, A. A., Schuster, D. J., Kring, J. B. (1995). Color mulches influence yield and insect pest populations in tomatoes. Journal of the American Society for Horticultural Science, 120(5), 778-784. https://doi.org/10.21273/JASHS.120.5.778
Damos, P., Savopoulou-Soultani, M. (2012). Temperature-driven models for insect development and vital thermal requirements. Psyche, 2012, 13. https://doi.org/10.1155/2012/123405
Ding, W., Taylor, G. (2016). Automatic moth detection from trap images for pest management. Computers and Electronics in Agriculture, 123(Supplement C), 17-28. https://doi.org/10.1016/j.compag.2016.02.003
Donatelli, M., Magarey, R. D., Bregaglio, S., Willocquet, L., Whish, J. P. M., Savary, S. (2017). Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems, 155, 213-224. https://doi.org/10.1016/j.agsy.2017.01.019
Espinoza, K., Valera, D. L., Torres, J. A., López, A., Molina-Aiz, F. D. (2016). Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture. Computers and Electronics in Agriculture, 127(Supplement C), 495-505. https://doi.org/10.1016/j.compag.2016.07.008
Feichtenhofer, C., Pinz, A., Zisserman, A. (2017). Detect to track and track to detect. CoRR, abs/1710.03958.
Ferguson, A. W., Skellern, M. P., Johnen, A., von Richthofen, J.-S., Watts, N. P., Bardsley, E., . . . Cook, S. M. (2016). The potential of decision support systems to improve risk assessment for pollen beetle management in winter oilseed rape. Pest Management Science, 72(3), 609-617. https://doi.org/10.1002/ps.4069
Fuentes, A., Yoon, S., Kim, S. C., Park, D. S. (2017). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors (Basel, Switzerland), 17(9), 2022. https://doi.org/10.3390/s17092022
García-Fernández, F. J., Verleysen, M., Lee, J. A., Diaz, I. (2013). Stability comparison of dimensionality reduction techniques attending to data and parameters variations. In: Eurographics Conference on Visualization (EuroVis), Leipzig, Germany.
Geng, C., Huang, S.-J., Chen, S. (2018). Recent advances in open set recognition: A survey. arXiv, arXiv:1811.08581.
Ghani, I., Khalid, S. A. N., Mohd. N., Mohamad, R. (2012). Effectiveness of sticky trap designs and colours in trapping alate whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Pertanika Journal of Tropical Agricultural Science, 35, 127-134.
Guagliardo, S. A. J., Reynolds, M. G., Kabamba, J., Nguete, B., Shongo Lushima, R., Wemakoy, O. E., McCollum, A. M. (2018). Sounding the alarm: Defining thresholds to trigger a public health response to monkeypox. PLoS Neglected Tropical Diseases, 12(12), e0007034. https://doi.org/10.1371/journal.pntd.0007034
Guizilini, V., Ramos, F. (2015). Online self-supervised learning for dynamic object segmentation. The International Journal of Robotics Research, 34(4-5), 559-581. https://doi.org/10.1177/0278364914566514
Haefner, J. W. (2005). Modeling Biological Systems: Principles and Applications (2nd ed.). New York, USA: Springer.
Haridas, C. V., Meinke, L. J., Hibbard, B. E., Siegfried, B. D., Tenhumberg, B. (2016). Effects of temporal variation in temperature and density dependence on insect population dynamics. Ecosphere, 7(5). https://doi.org/10.1002/ecs2.1287
Hazarika, L., Bhuyan, M., Hazarika, B. (2009). Insect pests of tea and their management. Annual Review of Entomology, 54, 267-284. https://doi.org/10.1146/annurev.ento.53.103106.093359
Hong, S.-J., Kim, S.-Y., Kim, E., Lee, C.-H., Lee, J.-S., Lee, D.-S., . . . Kim, G. (2020). Moth detection from pheromone trap images using deep learning object detectors. Agriculture, 10, 170. https://doi.org/10.3390/agriculture10050170
Huang, B., Reichman, D., Collins, L. M., Bradbury, K., Malof, J. M. (2019). Tiling and stitching segmentation output for remote sensing: Basic challenges and recommendations. arXiv, arXiv:1805.12219.
Iqbal, Z., Islam, N., Jang, B.-E., Ali, M., Kabir, S. N., Lee, D.-H., . . . Chung, S.-O. (2019). Monitoring the operating status of an automatic harmful fly collector for smart greenhouses. Journal of Biosystems Engineering, 44(4), 258-268. https://doi.org/10.1007/s42853-019-00036-8
Israni, D., Mewada, H. (2018). Identity retention of multiple objects under extreme occlusion scenarios using feature descriptors. Journal of Communications Software and Systems, 14, 290-301.
Jain, L. P., Scheirer, W. J., Boult, T. E. (2014). Multi-class open set recognition using probability of inclusion. In: European Conference on Computer Vision, Zurich, Switzerland.
Jha, V. K., Seal, D. R., Schuster, D. J., Kakkar, G. (2009). Diel flight pattern and periodicity of chilli thrips (Thysanoptera: Thripidae) on selected hosts in South Florida. In: Proceedings of the Florida State Horticultural Society.
Jones, A., Ali, U., Egerstedt, M. (2016). Optimal pesticide scheduling in precision agriculture. In: 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS).
Jones, D. R. (2005). Plant viruses transmitted by thrips. European Journal of Plant Pathology, 113(2), 119-157. https://doi.org/10.1007/s10658-005-2334-1
Kaas, J. (2005). Vertical distribution of thrips and whitefly in greenhouses and relative efficiency of commercially available sticky traps for population monitoring. In: Netherlands Entomological Society Meeting.
Kingsolver, J. G., Higgins, J. K., Augustine, K. E. (2015). Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects. The Journal of Experimental Biology, 218(14), 2218-2225. https://doi.org/10.1242/jeb.120733
Krizhevsky, A., Sutskever, I., Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
Kumar, R., Martin, V., Moisan, S. (2010). Robust insect classification applied to real Time greenhouse infestation monitoring. In: Proceedings of the 20th International Conference on Pattern Recognition on Visual Observation and Analysis of Animal and Insect Behavior Workshop, Istanbul, Turkey.
Kwasnicka, H., Paradowski, M. (2010). Machine Learning Methods in Automatic Image Annotation (Vol. 263, pp. 387-411).
Lamichhane, J. R., Aubertot, J.-N., Begg, G., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., . . . Messéan, A. (2016). Networking of integrated pest management: A powerful approach to address common challenges in agriculture. Crop Protection, 89, 139-151. https://doi.org/10.1016/j.cropro.2016.07.011
Larson, R., Falvo, D. C. (2011). Linear Algebra. Massachusetts, USA: Cengage Learning.
Lee, C.-H., Liu, C.-F., Lin, Y.-T., Yain, Y.-S., Lin, C.-H. (2020). New agriculture business model in Taiwan. International Food and Agribusiness Management Review, 23(5), 773-782. https://doi.org/10.22434/ifamr2019.0164
Lee, D.-H. (2013). Pseudo-Label: The simple and efficient semi-supervised learning method for deep neural networks. In: ICML 2013 Workshop: Challenges in Representation Learning (WREPL).
Lewis, W. J., van Lenteren, J. C., Phatak, S. C., Tumlinson, J. H. (1997). A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences, 94, 12243-12248.
Liang, X.-H., Lei, Z. R., Wen, J.-Z., Zhu, M.-L. (2010). The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse. Insect Science, 17(6), 535-541. https://doi.org/10.1111/j.1744-7917.2010.01337.x
Liu, F. T., Ting, K. M., Zhou, Z. (2008). Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C.-Y., Berg, A. C. (2016). SSD: Single shot multibox detector. arXiv, abs/1512.02325.
López Granado, O., Martínez-Rach, M., Migallón, H., Malumbres, M., Bonastre Pina, A., Serrano Martín, J. (2012). Monitoring pest insect traps by means of low-power image sensor technologies. Sensors, 12(11), 15801-15819. https://doi.org/10.3390/s121115801
Lu, C.-Y., Rustia, D. J. A., Lin, T.-T. (2019). A greenhouse whitefly early warning method based on autoregression recurrent neural network. In: Asia-Pacific Federation for Information Technology in Agriculture Conference, Taichung, Taiwan.
Ma, J., Chen, L., Gao, Z. (2018). Hardware implementation and optimization of Tiny-YOLO network. In: International Forum on Digital TV and Wireless Multimedia Communications, Singapore.
Martin, V., Moisan, S. (2017). Early pest detection in greenhouses.
McKee, G. J. (2011). Coordinated pest management decisions in the presence of management externalities: The case of greenhouse whitefly in California-grown strawberries. Agricultural Systems, 104(1), 94-103. https://doi.org/10.1016/j.agsy.2010.10.005
McKinney, W. (2010). Data structures for statistical computing in Python. In: Proceedings of the 9th Python in Science Conference.
Miller, P., Lanier, W., Brandt, S. (2018). Using Growing Degree Days to Predict Plant Stages. Retrieved from http://store.msuextension.org/publications/AgandNaturalResources/MT200103AG.pdf
Milton, J. S., Arnold, J. C. (2004). Introduction to Probability and Statistics (4th ed.). New York, USA: McGraw-Hill.
Miluch, C. E., Dosdall, L. M., Evenden, M. L. (2013). The potential for pheromone-based monitoring to predict larval populations of diamondback moth, Plutella xylostella (L.), in canola (Brassica napus L.). Crop Protection, 45, 89-97. https://doi.org/10.1016/j.cropro.2012.11.023
Miranda, J. L., Gerardo, B. D., Tanguilig, B. T. I. (2014). Pest detection and extraction using image processing techniques. International Journal of Computer and Communication Engineering 3, 189-192. https://doi.org/10.7763/IJCCE.2014.V3.317
Miranda, M. Á., Barceló, C., Valdés, F., Feliu, J. F., Nestel, D., Papadopoulos, N., . . . Alorda, B. (2019). Developing and implementation of decision support system (DSS) for the control of olive fruit fly, Bactrocera Oleae, in Mediterranean olive orchards. Agronomy, 9(10), 620. https://doi.org/10.3390/agronomy9100620
Mirnezhad, M., Romero-González, R. R., Leiss, K. A., Choi, Y. H., Verpoorte, R., Klinkhamer, P. G. L. (2010). Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochemical Analysis, 21(1), 110-117. https://doi.org/10.1002/pca.1182
Moreau, T. L., Isman, M. B. (2011). Trapping whiteflies? A comparison of greenhouse whitefly (Trialeurodes vaporariorum) responses to trap crops and yellow sticky traps. Pest Management Science, 67(4), 408-413. https://doi.org/10.1002/ps.2078
Mundada, R. G., Gohokar, V. V. (2013). Detection and classification of pests in greenhouse using image processing. IOSR Journal of Electronics and Communication Engineering, 5, 57-63. https://doi.org/10.9790/2834-565763
Murai, T., Loomans, A. J. M. (2001). Evaluation of an improved method for mass-rearing of thrips and a thrips parasitoid. Entomologia Experimentalis et Applicata, 101(3), 281-289. https://doi.org/10.1046/j.1570-7458.2001.00913.x
Navas-Castillo, J., Fiallo-Olive, E., Sanchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219-248. https://doi.org/10.1146/annurev-phyto-072910-095235
Navasero, M., Navasero, M. (2015). Insect Pests of Tomato: Pests and Diseases of Economically Important Crops in the Philippines (pp. 500-518): Department of Agriculture-Bureau of Agricultural Research.
Palacio-Niño, J.-O., Galiano, F. B. (2019). Evaluation metrics for unsupervised learning algorithms. arXiv, arXiv:1905.05667.
Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C. B., Condori, B., Crespo-Pérez, V., . . . Dangles, O. (2014). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences of the United States of America, 111(10), 3889-3894. https://doi.org/10.1073/pnas.1312693111
Parsons, L., Ross, R., Robert, K. (2019). A survey on wireless sensor network technologies in pest management applications. SN Applied Sciences, 2(1), 28. https://doi.org/10.1007/s42452-019-1834-0
Partel, V., Nunes, L., Stansly, P., Ampatzidis, Y. (2019). Automated vision-based system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence. Computers and Electronics in Agriculture, 162, 328-336. https://doi.org/10.1016/j.compag.2019.04.022
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
Pelgrom, K., Broekgaarden, C., Voorrips, R., Bas, N., Visser, R., Vosman, B. (2014). Host plant resistance towards the cabbage whitefly in Brassica oleracea and its wild relatives. Euphytica, 202. https://doi.org/10.1007/s10681-014-1306-y
Peng, R. K., Christian, K. (2005). The control efficacy of the weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), on the mango leafhopper, Idioscopus nitidulus (Hemiptera: Cicadellidea) in mango orchards in the Northern Territory. International Journal of Pest Management, 51(4), 297-304. https://doi.org/10.1080/09670870500151689
Pinto-Zevallos, D. M., Vänninen, I. (2013). Yellow sticky traps for decision-making in whitefly management: What has been achieved? Crop Protection, 47, 74-84. https://doi.org/10.1016/j.cropro.2013.01.009
Potamitis, I., Eliopoulos, P., Rigakis, I. (2017). Automated remote insect surveillance at a global scale and the internet of things. Robotics, 6(3), 19. https://doi.org/10.3390/robotics6030019
Pourdarbani, R., Sabzi, S., Hernández Hernández, M., Hernández Hernández, J. L., García-Mateos, G., Kalantari, D., Martínez, J. (2019). Comparison of different classifiers and the majority voting rule for the detection of plum fruits in garden conditions. Remote Sensing, 11, 2546. https://doi.org/10.3390/rs11212546
Prema, M. S., Ganapathy, N., Renukadevi, P., Mohankumar, S., Kennedy, J. S. (2018). Coloured sticky traps to monitor thrips population in cotton. Journal of Entomology and Zoology Studies, 6(2).
Pundt, L. (2013). Tips on Scouting Poinsettia Insect and Mite Pests. Retrieved from http://ipm.uconn.edu/documents/view.php?id=658
Qiao, M., Lim, J., Ji, C. W., Chung, B.-K., Kim, H.-Y., Uhm, K.-B., . . . Chon, T.-S. (2008). Density estimation of Bemisia tabaci (Hemiptera: Aleyrodidae) in a greenhouse using sticky traps in conjunction with an image processing system. Journal of Asia-Pacific Entomology, 11(1), 25-29. https://doi.org/10.1016/j.aspen.2008.03.002
Qin, J.-L., Yang, X.-H., Yang, Z.-W., Luo, J.-T., Lei, X.-F. (2017). New technology for using meteorological information in forest insect pest forecast and warning systems. Pest Management Science, 73(12), 2509-2518. https://doi.org/10.1002/ps.4647
Ramalho, F. S., Malaquias, J. B., Lira, A. C. S., Oliveira, F. Q., Zanuncio, J. C., Fernandes, F. S. (2015). Temperature-dependent fecundity and life table of the Fennel Aphid Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae). PLoS ONE, 10(4), e0122490. https://doi.org/10.1371/journal.pone.0122490
Redmon, J., Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv, abs/1804.02767.
Ren, S., He, K., Girshick, R. B., Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
Rhainds, M., Cloutier, C., Shipp, L., Boudreault, S., Daigle, G., Brodeur, J. (2007). Temperature-mediated relationship between western flower thrips (Thysanoptera: Thripidae) and chrysanthemum. Environmental Entomology, 36(2), 475-483. https://doi.org/10.1093/ee/36.2.475
Rieger, D., Fraunholz, C., Popp, J., Bichler, D., Dittmann, R., Helfrich-Forster, C. (2007). The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. Journal of Biological Rhythms, 22, 387-399. https://doi.org/10.1177/0748730407306198
Rigamonti, I. E., Trivellone, V., Jermini, M., Fuog, D., Baumgärtner, J. (2014). Multiannual infestation patterns of grapevine plant inhabiting Scaphoideus titanus (Hemiptera: Cicadellidae) leafhoppers. The Canadian Entomologist, 146, 67-79. https://doi.org/10.4039/tce.2013.51
Rossetto, C. J., Carvalho, R. L., Walder, J. M. M. (2017). Mango resistance to fruit fly: Method of evaluation, resistant cultivars and resistance factors. Acta Horticulturae, 251-254. https://doi.org/10.17660/ActaHortic.2017.1183.36
Rustia, D. J. A., Chao, J.-J., Chiu, L.-Y., Wu, Y.-F., Chung, J.-Y., Hsu, J.-C., Lin, T.-T. (2020a). Automatic greenhouse insect pest detection and recognition based on a cascaded deep learning classification method. Journal of Applied Entomology, 1-17. https://doi.org/10.1111/jen.12834
Rustia, D. J. A., Chao, J.-J., Chung, J.-Y., Lin, T.-T. (2019). An online unsupervised deep learning approach for an automated pest insect monitoring system. In: 2019 ASABE Annual International Meeting, Boston, Massachusetts. http://elibrary.asabe.org/abstract.asp?aid=50319 t=5
Rustia, D. J. A., Chung, W.-Y. (2016). A multi-functional remotely accessible monitoring and control system for optimized plant growth. In: IEEE International Conference on Applied System Innovation, Okinawa, Japan.
Rustia, D. J. A., Lin, C. E., Chung, J.-Y., Lin, T.-T. (2017). An object classifier using support vector machines for real-time insect pest counting. In: Conference on Bio-Mechatronics and Agricultural Machinery Engineering, Taipei, Taiwan.
Rustia, D. J. A., Lin, C. E., Chung, J.-Y., Lin, T.-T. (2018). A real-time multi-class insect pest identification method using cascaded convolutional neural networks. In: 9th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering, Jeju, South Korea.
Rustia, D. J. A., Lin, C. E., Chung, J.-Y., Zhuang, Y.-J., Hsu, J.-C., Lin, T.-T. (2020b). Application of an image and environmental sensor network for automated greenhouse insect pest monitoring. Journal of Asia-Pacific Entomology, 23(1), 17-28. https://doi.org/10.1016/j.aspen.2019.11.006
Rustia, D. J. A., Lin, T.-T. (2019). Stochastic models for greenhouse whitefly flight behavior based on wireless image monitoring system measurements. Pertanika Journal of Science and Technology, 27(S1), 81-93.
Sampson, C., Covaci, A. D., Hamilton, J. G. C., Hassan, N., Al-Zaidi, S., Kirk, W. D. J. (2018). Reduced translucency and the addition of black patterns increase the catch of the greenhouse whitefly, Trialeurodes vaporariorum, on yellow sticky traps. PLoS ONE, 13(2), e0193064. https://doi.org/10.1371/journal.pone.0193064
Sengonca, C., Liu, B. (1999). Laboratory studies on the effect of temperature and humidity on the life table of the whitefly Aleurotuberculatus takahashi David Subramaniam (Hom., Aleyrodidae) from southeastern China. Anzeiger für Schädlingskunde, 72(2), 45. https://doi.org/10.1007/bf02771095
Shimoda, M., Honda, K.-I. (2013). Insect reactions to light and its applications to pest management. Applied Entomology and Zoology, 48(4), 413-421. https://doi.org/10.1007/s13355-013-0219-x
Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv, abs/1409.1556.
Skawsang, S., Nagai, M., Tripathi, N. K., Soni, P. (2019). Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of Thailand. Applied Sciences, 9, 4846. https://doi.org/10.3390/app9224846
Stukenberg, N., Gebauer, K., Poehling, H. M. (2015). Light emitting diode(LED)-based trapping of the greenhouse whitefly (Trialeurodes vaporariorum). Journal of Applied Entomology, 139(4), 268-279. https://doi.org/10.1111/jen.12172
Thimijan, R. W., Heins, R. D. (1983). Photometric, radiometric, and quantum light units of measure: A review of procedures for interconversion. HortScience, 18(6).
Unel, F. O., Ozkalayci, B. O., Çigla, C. (2019). The power of tiling for small object detection. In: Conference on Computer Vision and Pattern Recognition (CVPR), Longbeach, California, USA.
van Lenteren, J. C., Martin, N. A. (1999). Biological Control of Whiteflies: Integrated Pest and Disease Management in Greenhouse Crops (pp. 202-216). Dordrecht: Springer Netherlands.
van Lenteren, J. C., van Roermund, H. J. W., Sütterlin, S. (1996). Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with the parasitoid Encarsia formosa: How does It work? Biological Control, 6(1), 1-10. https://doi.org/10.1006/bcon.1996.0001
Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S. (2017). Learning from noisy large-scale datasets with minimal supervision. In: Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA.
Wang, X., Levy, K., Son, Y., Johnson, M., Daane, K. (2012). Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biological Control, 60, 247-254. https://doi.org/10.1016/j.biocontrol.2011.11.012
Wen, C., Guyer, D. (2012). Image-based orchard insect automated identification and classification method. Computers and Electronics in Agriculture, 89, 110-115. https://doi.org/10.1016/j.compag.2012.08.008
Witzgall, P., Kirsch, P., Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36(1), 80-100. https://doi.org/10.1007/s10886-009-9737-y
Xia, C., Chon, T.-S., Ren, Z., Lee, J.-M. (2015). Automatic identification and counting of small size pests in greenhouse conditions with low computational cost. Ecological Informatics, 29(Part 2), 139-146. https://doi.org/10.1016/j.ecoinf.2014.09.006
Xiao, Q., Li, W., Kai, Y., Chen, P., Zhang, J., Wang, B. (2019). Occurrence prediction of pests and diseases in cotton on the basis of weather factors by long short term memory network. BMC Bioinformatics, 20(25), 688. https://doi.org/10.1186/s12859-019-3262-y
Yee, W. L. (2013). Soil moisture and relative humidity effects during postdiapause on the emergence of western cherry fruit fly (Diptera: Tephritidae). The Canadian Entomologist, 145(3), 317-326. https://doi.org/10.4039/tce.2013.7
Yi, Z., Yongliang, S., Jun, Z. (2019). An improved Tiny-YOLOv3 pedestrian detection algorithm. Optik, 183. https://doi.org/10.1016/j.ijleo.2019.02.038
Yin, L. T., Maschwitz, U. (1983). Sexual pheromone in the green house whitefly Trialeurodes vaporariorum Westw. Zeitschrift für Angewandte Entomologie, 95(1‐5), 439-446. https://doi.org/10.1111/j.1439-0418.1983.tb02665.x
Zhang, C., Cai, J., Xiao, D., Ye, Y., Chehelamirani, M. (2018). Research on vegetable pest warning system based on multidimensional big data. Insects, 9(2), 66. https://doi.org/10.3390/insects9020066
Zhong, Y., Gao, J., Lei, Q., Zhou, Y. (2018). A vision-based counting and recognition system for flying insects in intelligent agriculture. Sensors (Basel, Switzerland), 18(5), 1489. https://doi.org/10.3390/s18051489
Zong, B., Song, Q., Min, M. R., Cheng, W., Lumezanu, C., Cho, D.-K., Chen, H. (2018). Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (ICLR), Vancouver, Canada.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8538-
dc.description.abstract為了推動農民使採用智慧化的蟲害整合管理(IPM),本研究開發了一套可以自動監測農業生產場域中害蟲數量及環境相關資訊的智慧整合系統。本系統由無線感測器裝置所組成,這些裝置會將黏蟲紙的影像傳送至遠端伺服器進行分析並回傳訊息給農民作為蟲害整合管理之應用。本研究同時開發了用於黏蟲紙影像上自動偵測及辨識害蟲之演算法,該演算法利用卷積神經網路(CNN)深度學習模型以級聯的方式進行害蟲偵測和分類;分別是由一個負責從黏蟲紙影像上定位出物件的物件偵測器模型及一個用於辨識所偵測到的物件種類的分類模型所組成。深度學習模型根據安裝場域的特性分別以兩種不同的深度學習方法來進行訓練。對於溫室場域應用了半監督式學習的技術,利用系統新擷取的黏蟲紙影像自動收集害蟲訓練影像並重新訓練害蟲分類模型。經過一年的持續訓練,分類模型基於物件層次和影像層次的測試F1分數都可達到0.93。至於戶外場域則是對多個分類模型進行訓練並根據分類學進行級聯,將害蟲影像分類到物種級別,此級聯演算法基於物件層次和影像層次測試的平均F1分數分別為0.91和0.89。本系統已安裝在多個農業生產場域中驗證與測試並提供農場管理者進行評估與應用於蟲害整合管理。本研究並透過數據分析從長期資料中獲取相關資訊開發了警報模型及生物學模型,將蟲害數量數據整理轉換為有意義的資訊,例如可以提供蟲害整合管理行動建議的警報級別,以幫助農場管理者進行決策。在對所有實驗場域的測試中,利用所訓練的生物學模型來描述害蟲的飛行頻率行為,平均r2值可以達到0.97。這些整理過的資訊是通過網站和行動APP與農場管理者共享以便有效應對蟲害狀況。根據農場管理者的使用情況及回饋意見顯示,本系統能夠透過量化的參考依據來協助擬定蟲害整合管理策略,而自動化系統能夠讓研究人員及專家引導農民進入數據驅動和友善環境的蟲害管理。zh_TW
dc.description.abstractTo drive farmers into smarter integrated pest management (IPM), an integrated and intelligent system that can automatically monitor the number of insect pests and measure environmental conditions in agricultural production sites was developed. The proposed system is composed of wireless sensor nodes that send images of sticky paper traps to a remote server. An algorithm was developed to automatically detect and recognize insect pests from the sticky paper trap images. The algorithm features a cascaded approach for detection and classification using convolutional neural network (CNN) deep learning models. It is composed of an object detector model, which locates the objects from the sticky paper trap images, and image classifier models that identify the detected objects. The deep learning models were trained using two different deep learning methods fitted for each type of installation site. For indoor sites such as greenhouses, a semi-supervised learning technique was applied to train a multi-class insect classifier model. The proposed technique was used to automatically collect training images from newly acquired sticky paper trap images and retrain the classifier model. After a year of continuously training the classifier model, F1-scores of 0.93 was achieved on testing both by object level and image level. For outdoor sites like orchards, multiple classifier models were trained and cascaded taxonomically to classify insect pest images up to the species level. The cascaded algorithm was found to have average F1-scores of 0.91 and 0.89 by object level and image level testing, respectively. The system was installed in several agricultural production sites for farm managers to evaluate and utilize in their IPM routines. Data analytics was applied to extract information from the acquired long term data. Alarm models and biological models were developed that convert insect pest count data into valuable information such as alarm levels that indicate action recommendations for IPM, guiding farm managers in decision-making. Upon validation, the biological models were able to describe the flight rate behavior of the insect pests with an average r2 of 0.97 based on the fitted models of all the experimental sites. The information was shared through a website and mobile APP which farm managers used to effectively respond to the present insect pest condition. The usage information and feedback given by the farm managers showed that the system was able to help them by having quantitative reference for their IPM strategies. This research presents different ways an automated system in assisting farmers for IPM applications, which can be used by researchers and experts in bringing farmers to data-driven and environmentally friendly insect pest management.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:56:56Z (GMT). No. of bitstreams: 1
U0001-2801202118555100.pdf: 16035215 bytes, checksum: 878b24a7c4c262529782b5bd7f11a586 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgements ii
摘要 iii
Abstract v
Table of Contents vii
List of Figures xiii
List of Tables xxii
List of Equations xxiii
Nomenclature xxv
Chapter 1 Introduction 1
1.1 Background of the study 1
1.2 Statement of the problem 3
1.3 Significance of the study 4
1.4 Objectives 5
Chapter 2 Review of Related Literature 6
2.1 Integrated pest management (IPM) 6
2.1.1 Monitoring 6
2.1.1.1 Insect pest traps 7
2.1.1.2 Insect pests 10
2.1.2 Prevention 11
2.1.3 Intervention 14
2.2 Artificial Intelligence of Things (AIoT) in IPM 16
2.3 Automatic insect pest detection and recognition 19
2.3.1 Image processing and machine learning methods 21
2.3.2 Deep learning methods 23
2.4 Decision support system (DSS) for IPM 29
2.4.1 Alarm model development 29
2.4.2 Biophysical model development 32
Chapter 3 Methodology 36
3.1 System overview 36
3.2 Monitoring system 37
3.2.1 Indoor sensor node 38
3.2.2 Outdoor sensor node 43
3.2.3 Network configuration 47
3.2.4 Device configuration and data transmission 48
3.3 Server architecture 50
3.4 Experimental sites 52
3.5 Insect pest detection and recognition algorithm 58
3.5.1 Object detector 59
3.5.2 Cascaded multi-class insect classifiers 63
3.5.3 Spatio-temporal voting method 70
3.6 Image data collection and preparation 72
3.7 Semi-supervised learning method 76
3.7.1 Base model building 77
3.7.2 Online image data collection 77
3.7.3 Unsupervised pseudo-labelling algorithm 79
3.7.4 Unsupervised model fine-tuning 84
3.7.5 Model update and selection 84
3.8 Algorithm evaluation 86
3.8.1 Object detector image level evaluation 87
3.8.2 Image classifier object level evaluation 87
3.8.3 Integrated algorithm evaluation 88
3.8.4 Semi-supervised learning evaluation 89
3.9 System performance indicators 91
3.9.1 System data throughput 92
3.9.2 System insect pest trapping efficacy 92
3.10 Data analytics 94
3.10.1 Insect pest count alarm model development 95
3.10.2 Insect pest hotspot detection 100
3.10.3 Insect pest flight rate model development 101
3.10.4 Crop growth information 103
3.11 System front-end 104
3.11.1 Website 105
3.11.2 Mobile APP 111
Chapter 4 Results and Discussion 115
4.1 Insect pest detection and recognition algorithm model training, validation and testing 115
4.1.1 Supervised object detector and insect vs. non-insect model 115
4.1.1.1 Indoor object detector and insect vs. non-insect model 115
4.1.1.2 Outdoor object detector and insect vs. non-insect model 121
4.1.2 Multi-class insect classifier model 126
4.1.2.1 Semi-supervised indoor multi-class insect classifier model 127
4.1.2.2 Supervised outdoor multi-class insect classifier models 140
4.1.3 Image-level testing results 148
4.1.3.1 Indoor insect pest detection and recognition testing results 148
4.1.3.2 Outdoor insect pest detection and recognition testing results 158
4.2 System performance testing 166
4.2.1 System data throughput analysis 166
4.2.2 System insect pest trapping efficacy analysis 171
4.3 Data analytics model development 186
4.3.1 Insect pest count alarm model 186
4.3.2 Insect pest flight rate model 197
4.4 Insect pest count data analysis 206
4.4.1 Indoor site data analysis 206
4.4.2 Outdoor site data analysis 218
4.5 User feedback 223
Chapter 5 Conclusions and Recommendations 227
5.1 Conclusions 227
5.2 Recommendations 230
References 233
dc.language.isoen
dc.title應用無線影像環境感測網路於智慧整合蟲害管理zh_TW
dc.titleIntelligent and Integrated Pest Management Using Wireless Imaging and Environmental Sensor Networksen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.author-orcid0000-0002-5855-8109
dc.contributor.advisor-orcid林達德(0000-0003-0852-1372)
dc.contributor.oralexamcommittee郭彥甫(Yan-Fu Kuo),許如君(Ju-Chun Hsu),謝廣文(Kuang-Wen Hsieh),邱奕志(Yi-Chich Chiu)
dc.contributor.oralexamcommittee-orcid郭彥甫(0000-0002-5886-5643),許如君(0000-0002-8058-5090)
dc.subject.keyword整合蟲害管理,黏蟲紙,影像辨識,深度學習,無線感測網路,數據分析,zh_TW
dc.subject.keywordintegrated pest management,sticky paper trap,image recognition,deep learning,wireless sensor network,data analytics,en
dc.relation.page256
dc.identifier.doi10.6342/NTU202100237
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-02-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
dc.date.embargo-lift2024-01-01-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-2801202118555100.pdf15.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved