請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85387完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一薰(I-Hsuan Hong) | |
| dc.contributor.author | Li-Ting Fu | en |
| dc.contributor.author | 傅莉庭 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:16:02Z | - |
| dc.date.copyright | 2022-07-26 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2022-07-25 | |
| dc.identifier.citation | Arias, M. B. and Bae, S. (2016). Electric vehicle charging demand forecasting model based on big data technologies. Applied energy, 183:327–339. Asghari, M., Fathollahi-Fard, A. M., Mirzapour Al-e hashem, S., and Dulebenets, M. A. (2022). Transformation and linearization techniques in optimization: A state-of-the-art survey. Mathematics, 10(2):283. Aujla, G. S., Kumar, N., Singh, M., and Zomaya, A. Y. (2019). Energy trading with dynamic pricing for electric vehicles in a smart city environment. Journal of Parallel and Distributed Computing, 127:169–183. Awasthi, A., Venkitusamy, K., Padmanaban, S., Selvamuthukumaran, R., Blaabjerg, F., and Singh, A. K. (2017). Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm. Energy, 133:70–78. Blangiardo, M. and Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons. Caccetta, L., Qu, B., and Zhou, G. (2011). A globally and quadratically convergent method for absolute value equations. Computational optimization and applications, 48(1):45– 58. Carley, S., Krause, R. M., Lane, B. W., and Graham, J. D. (2013). Intent to purchase a plug-in electric vehicle: A survey of early impressions in large us cites. Transportation Research Part D: Transport and Environment, 18:39–45. Castro, P. M. (2016). Spatial branch and bound algorithm for the global optimization of miqcps. In Computer Aided Chemical Engineering, volume 38, pages 523–528. Elsevier. Comparethemarket (2022). Globally charged. Retrieved from https://www.comparethemarket.com/car-insurance/content/ cost-of-charging-an-electric-car-globally/.40 Crow, M. et al. (2016). Cost-constrained dynamic optimal electric vehicle charging. IEEE Transactions on Sustainable Energy, 8(2):716–724. Davidov, S. and Pantoš, M. (2017). Planning of electric vehicle infrastructure based on charging reliability and quality of service. Energy, 118:1156–1167. Dharmakeerthi, C., Mithulananthan, N., and Saha, T. (2013). Planning of electric vehicle charging infrastructure. In 2013 IEEE Power & Energy Society General Meeting, pages 1–5. IEEE. Dong, X., Mu, Y., Jia, H., Wu, J., and Yu, X. (2016). Planning of fast ev charging stations on a round freeway. IEEE Transactions on Sustainable Energy, 7(4):1452–1461. Flammini, M. G., Prettico, G., Julea, A., Fulli, G., Mazza, A., and Chicco, G. (2019). Statistical characterisation of the real transaction data gathered from electric vehicle charging stations. Electric Power Systems Research, 166:136–150. Fong, Y., Rue, H., and Wakefield, J. (2010). Bayesian inference for generalized linear mixed models. Biostatistics, 11(3):397–412. Gilanifar, M., Parvania, M., and El Hariri, M. (2020). Multi-task gaussian process learning for energy forecasting in iot-enabled electric vehicle charging infrastructure. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pages 1–6. IEEE. Gong, L., Cao, W., Liu, K., and Zhao, J. (2020). Optimal charging strategy for electric vehicles in residential charging station under dynamic spike pricing policy. Sustainable Cities and Society, 63:102474. Guerra, E. and Daziano, R. A. (2020). Electric vehicles and residential parking in an urban environment: Results from a stated preference experiment. Transportation Research Part D: Transport and Environment, 79:102222. Hardman, S., Jenn, A., Tal, G., Axsen, J., Beard, G., Daina, N., Figenbaum, E., Jakobsson, N., Jochem, P., Kinnear, N., et al. (2018). A review of consumer preferences of and interactions with electric vehicle charging infrastructure. Transportation Research Part D: Transport and Environment, 62:508–523. Horst, R., Pardalos, P. M., and Van Thoai, N. (2000). Introduction to global optimization. Springer Science & Business Media. Horst, R. and Tuy, H. (2013). Global optimization: Deterministic approaches. Springer Science & Business Media. ICCT (2020). Consulting report - electric vehicle charging guide for cities. Retrieved from https://theicct.org/publication/electric-vehicle-charging-guide-for-cities/. IEA (2021). Global ev outlook 2021. Retrieved from https://www.iea.org/reports/ global-ev-outlook-2021. Illian, J. B., Martino, S., Sørbye, S. H., Gallego-Fernández, J. B., Zunzunegui, M., Es quivias, M. P., and Travis, J. M. (2013). Fitting complex ecological point process mod els with integrated nested laplace approximation. Methods in Ecology and Evolution, 4(4):305–315. ISLAM, M., Shareef, H., and Mohamed, A. (2016). Optimal siting and sizing of rapid charging station for electric vehicles considering bangi city road network in malaysia. Turkish Journal of Electrical Engineering and Computer Science, 24(5):3933–3948. Krupa, J. S., Rizzo, D. M., Eppstein, M. J., Lanute, D. B., Gaalema, D. E., Lakkaraju, K., and Warrender, C. E. (2014). Analysis of a consumer survey on plug-in hybrid electric vehicles. Transportation Research Part A: Policy and Practice, 64:14–31. Li, S., Tong, L., Xing, J., and Zhou, Y. (2017a). The market for electric vehicles: indirect network effects and policy design. Journal of the Association of Environmental and Resource Economists, 4(1):89–133. Li, X., Chen, P., and Wang, X. (2017b). Impacts of renewables and socioeconomic factors on electric vehicle demands–panel data studies across 14 countries. Energy Policy, 109:473–478. Liu, Z., Wen, F., and Ledwich, G. (2012). Optimal planning of electric-vehicle charging stations in distribution systems. IEEE transactions on power delivery, 28(1):102–110. Luo, L., Gu, W., Zhou, S., Huang, H., Gao, S., Han, J., Wu, Z., and Dou, X. (2018). Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities. Applied energy, 226:1087–1099. Mangasarian, O. (2009). A generalized newton method for absolute value equations. Optimization Letters, 3(1):101–108. Mangasarian, O. and Meyer, R. (2006). Absolute value equations. Linear Algebra and Its Applications, 419(2-3):359–367. Mangasarian, O. L. (2007). Absolute value equation solution via concave minimization. Optimization Letters, 1(1):3–8. Moghaddam, Z., Ahmad, I., Habibi, D., and Masoum, M. A. (2019). A coordinated dynamic pricing model for electric vehicle charging stations. IEEE Transactions on Transportation Electrification, 5(1):226–238. Mohammadi, S., Al-e Hashem, S. M., and Rekik, Y. (2020). An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company. International Journal of Production Economics, 219:347–359. Palanca, J., Jordán, J., Bajo, J., and Botti, V. (2020). An energy-aware algorithm for electric vehicle infrastructures in smart cities. Future Generation Computer Systems, 108:454–466. Pazouki, S., Mohsenzadeh, A., Ardalan, S., and Haghifam, M.-R. (2015). Simultaneous planning of pev charging stations and dgs considering financial, technical, and environmental effects. Canadian Journal of Electrical and Computer Engineering, 38(3):238–245. Pozo, C., Guillén-Gosálbez, G., Sorribas, A., and Jiménez, L. (2011). A spatial branch and-bound framework for the global optimization of kinetic models of metabolic net- works. Industrial & Engineering Chemistry Research, 50(9):5225–5238. Quesada, I. and Grossmann, I. E. (1995). A global optimization algorithm for linear fractional and bilinear programs. Journal of Global Optimization, 6(1):39–76. Reinhart, A. (2018). A review of self-exciting spatio-temporal point processes and their applications. Statistical Science, 33(3):299–318. Ryoo, H. S. and Sahinidis, N. V. (1995). Global optimization of nonconvex nlps and minlps with applications in process design. Computers & Chemical Engineering, 19(5):551–566. Ryoo, H. S. and Sahinidis, N. V. (1996). A branch-and-reduce approach to global optimization. Journal of global optimization, 8(2):107–138. Sadeghi-Barzani, P., Rajabi-Ghahnavieh, A., and Kazemi-Karegar, H. (2014). Optimal fast charging station placing and sizing. Applied Energy, 125:289–299. Seeger, M. (2004). Gaussian processes for machine learning. International journal of neural systems, 14(02):69–106. SHENG, X.-p. and LI, C.-r. (2007). Applicability analysis of demand side price mechanism in china. Power Demand Side Management, 9(6):6–8. Stein, O., Kirst, P., and Steuermann, P. (2013). An enhanced spatial branch-and-bound method in global optimization with nonconvex constraints. Optimization Online. Turker, H. and Bacha, S. (2018). Optimal minimization of plug-in electric vehicle charging cost with vehicle-to-home and vehicle-to-grid concepts. IEEE Transactions on Vehicular Technology, 67(11):10281–10292. Wagner, S., Götzinger, M., and Neumann, D. (2013). Optimal location of charging stations in smart cities: A points of interest based approach. Xie, Y., Zhao, K., Sun, Y., and Chen, D. (2010). Gaussian processes for short-term traffic volume forecasting. Transportation Research Record, 2165(1):69–78. Zhang, H., Hu, Z., Xu, Z., and Song, Y. (2015a). An integrated planning framework for different types of pev charging facilities in urban area. IEEE Transactions on Smart Grid, 7(5):2273–2284. Zhang, H., Hu, Z., Xu, Z., and Song, Y. (2016). Optimal planning of pev charging station with single output multiple cables charging spots. IEEE Transactions on Smart Grid, 8(5):2119–2128. Zhang, L., Shaffer, B., Brown, T., and Samuelsen, G. S. (2015b). The optimization of dc fast charging deployment in california. Applied energy, 157:111–122. Zheng, Y., Dong, Z. Y., Xu, Y., Meng, K., Zhao, J. H., and Qiu, J. (2013). Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning. IEEE transactions on Power Systems, 29(1):221–229. 內政部 (2022). 全國人口資料庫統計地圖. 取自於:https://gis.ris.gov.tw/dashboard.html?key=B07. 全國法規資料庫 (2019). 建築技術規則建築設計施工編. 取自於:https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=D0070115&flno=62. 台 灣 電 力 公 司 (2018). 電 價 表 及 說 明. 取 自 於:https://www.taipower.com.tw/tc/page.aspx?mid=1439&cid=2643&cchk=561d0bcf-12ea-4b75-87ae-70f93a60e49b. 台 灣 電 力 公 司 (2022). 電 價 知 識 專 區. 取 自 於:https://www.taipower.com.tw/tc/page.aspx?mid=213&cid=352&cchk=52452a93-48e7-47ab-9cd3-b0c6836cf15e. 國 家 發 展 委 員 會 (2021). 巴 黎 協 定 (paris agreement). 取 自 於:https://www.ndc.gov.tw/News_Content.aspx?n=01B17A05A9374683&sms=32ADE0CD4006BBE5&s=618CEF2D03B9697F. 張雯婷 (2020). 基於時空過程模型預測電動汽車充電需求. 臺灣大學工業工程學研究所碩士論文, page 臺北市. 特 斯 拉 (2022). 超 級 充 電 站. 取 自 於:https://www.tesla.com/zh_tw/supercharger. 立法院 (2021). 電動車產業化相關問題研析. 取自於:https://www.ly.gov.tw/Pages/Detail.aspx?nodeid=6590&pid=208610. 經濟部 (2021). 電動汽車充電基礎設施推動初步規劃草案. 取自於:http://www.parking.org.tw/document/meeting/1100708%E9%9B%BB%E5%8B%95%E8%BB%8A%E5%85%85%E9%9B%BB%E5%9F%BA%E7%A4%8E%E8%A8%AD%E6%9%BD%E6%8E%A8%E5%8B%95%E8%A6%8F%E5%8A%83%E8%AA%AA%E6%98%8E_%E4%BA%A4%E9%80%9A%E9%83%A8%E8%A8%8E%E8%AB%96%E7%89%88_%E7%B2%BE%E7%B0%A1%E7%89%88.pptx. 臺北市停車管理工程處 (2022). 臺北市路外停車場. 取自於:https://data.gov.tw/dataset/128290.45 臺 北 市 政 府 主 計 處 (2021). 市 政 統 計 週 報-交 通 運 輸. 取 自於:https://dbas.gov.taipei/News.aspx?n=1A92853853322CF6&sms=AC3003A760CEDBAC&_CSN=9244F59F04B36BF1. 行政院 (2017). 電動車輛產業相關產業政策. 取自於:https://ic.tpex.org.tw/policy.php?ic=A300. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85387 | - |
| dc.description.abstract | 隨著氣候變遷造成的環境影響,環保意識抬頭,各國紛紛制定能源轉型政策,降低溫室氣體排放的發展策略。以電動車取代燃油車降低溫室氣體排放,是能源轉型極為重要的一環。加速電動車之發展,首要之務即是布建友善之電動車使用環境,例如促進住宅、商業與公共停車空間廣布充電樁,或是設置電動車充電格位等。因此,城市的充電站規劃十分複雜,不僅牽涉到電力配置、電網容量、停車位等問題,還需考慮充電站的設置位置、充電樁的類型、數量及充電價格等因子。而充電需求預測、充電價格制訂及充電樁數量分配會互相影響,例如,充電需求隨充電價格變動,同時充電之需求預測則影響充電站的設置位置及充電樁的設置數量。然而,充電樁供給量及充電需求也會造成充電價格改變,因此,本研究目的為提出針對停車場之充電設施的最佳規劃,並透過需求預測與價格制定相互影響的關係找出讓充電站營運商可以獲得最大利潤之最佳價格策略。本研究以時空高斯過程 (Spatial-temporal Gaussian process) 建立的電動汽車充電需求預測模型來預測需求,模型中考慮人口數、興趣點個數及停車價格等因子,並建立混整數非線性規劃 (Mixed Integer Nonlinear Programing, MINLP) 的最佳化模型以求各充電站之最適充電價格。 | zh_TW |
| dc.description.abstract | With increasing of environmental awareness for dramatic climate changes, energy policy for cutting greenhouse gas emissions is urgent and critical for every country in the world. Using electric vehicles (EVs) to replace conventional gasoline cars is one of critical aspects to reduce the gas emissions to enhance the energy transition. To increase the use of EVs, an EV-user friendly charging infrastructure and attractive charging price are two important factors. With the consideration of the capacity of electrical power, the sites of charging points, and the numbers of AC/DC chargers, this study determines the pricing strategy and the amount of charging points based on the demand forecasts for EV charging infrastructure. The proposed model is to develop an optimal pricing strategy for charge point operators (CPOs) with the maximization of total profits. In this thesis, a spatiotemporal model is used to forecast the EV charging demands for parking lots. A Mixed Integer Nonlinear Programing (MINLP) model is constructed and formulated to calculate the best charging price of different types of EV charging in each charging station. A case study is presented to demonstrate the effectiveness of the proposed model. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:02Z (GMT). No. of bitstreams: 1 U0001-2207202216181000.pdf: 3328225 bytes, checksum: 6c88141dba393efdcb2099c7e130cf27 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vi 表目錄 vii 第 1 章 緒論 1 第 2 章 文獻回顧 4 第 3 章 充電站規劃模型 8 3.1 充電需求預測模型 9 3.2 充電價格最佳化模型 11 3.3 求解方法 19 3.3.1 模型重建方法 19 3.3.2 空間分支定界法 20 第 4 章 案例研究 23 4.1 研究區域 23 4.2 參數設定 28 4.3 結果 30 4.4 敏感度分析 35 第 5 章 結論與未來研究 39 參考文獻 40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 混整數非線性規劃 | zh_TW |
| dc.subject | 價格策略 | zh_TW |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 充電站 | zh_TW |
| dc.subject | Pricing Strategy | en |
| dc.subject | Electric Vehicle | en |
| dc.subject | Charging Station | en |
| dc.subject | MINLP | en |
| dc.title | 充電站營運商之最佳價格策略 | zh_TW |
| dc.title | The Optimal Pricing Strategy for Charge Point Operators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳政鴻(Cheng-Hung Wu),黃奎隆(Kwei-Long Huang),藍俊宏(Jakey Blue) | |
| dc.subject.keyword | 電動車,充電站,價格策略,混整數非線性規劃, | zh_TW |
| dc.subject.keyword | Electric Vehicle,Charging Station,Pricing Strategy,MINLP, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202201648 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-26 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2207202216181000.pdf | 3.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
