Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85376
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮(Shan-Li Wang)
dc.contributor.authorPing-Yong Chouen
dc.contributor.author周秉滽zh_TW
dc.date.accessioned2023-03-19T23:15:55Z-
dc.date.copyright2022-07-29
dc.date.issued2022
dc.date.submitted2022-07-26
dc.identifier.citation109年農業統計年報. (2021). 行政院農業委員會. 行政院農業委員會,土壤資料供應查詢平台. (2016). Retrieved July 12, 2022, from https://tssurgo.tari.gov.tw/Tssurgo/ 林素禎, 洪崑煌, & 吳繼光. (2000). 囊叢枝內生菌根菌在臺灣代表性土壤中之分布. [General Survey of Arbuscular Mycorrhizal Fungi in Selected Soils of Taiwan]. 中華農業研究, 49(4), 65-80. doi:10.29951/JARC.200012.0007 范惠茹. (2012). 探討臺灣代表性土壤利用世界土壤參比分類系統之問題及其與美國土壤分類名稱之對應. 國立臺灣大學, Retrieved from http://dx.doi.org/10.6342/NTU.2012.00505 2013. Design and analysis of experiments, 8th edition. Environmental Progress & Sustainable Energy, 32(1), 8-10. Angermann, A., Töpfer, J. 2008. Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. Journal of Materials Science, 43(15), 5123-5130. Asmus, F., Linke, B., Dunkel, H. 1988. Eigenschaften und Düngerwirkung von ausgefaulter Gülle aus der Biogasgewinnung. Archiv für Acker-und Pflanzenbau und Bodenkunde, 32(8), 527-532. Benner, R. 2011. Loose ligands and available iron in the ocean. Proceedings of the National Academy of Sciences, 108(3), 893-894. Bhattacharyya, A., Campbell, A.N., Tfaily, M.M., Lin, Y., Kukkadapu, R.K., Silver, W.L., Nico, P.S., Pett-Ridge, J. 2018. Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils. Environmental Science & Technology, 52(24), 14129-14139. Bishop, M.E., Jaisi, D.P., Dong, H., Kukkadapu, R.K., Ji, J. 2010. Bioavailability of Fe(III) in Loess Sediments: an Important Source of Electron Acceptors. Clays and Clay Minerals, 58(4), 542-557. Blake, R.L., Hessevick, R.E., Zoltai, T., Finger, L.W. 1966. Refinement of the hematite structure. American Mineralogist, 51(1-2), 123-129. Brankatschk, G., Finkbeiner, M. 2015. Modeling crop rotation in agricultural LCAs — Challenges and potential solutions. Agricultural Systems, 138, 66-76. Brust, G.E. 2019. Chapter 9 - Management Strategies for Organic Vegetable Fertility. in: Safety and Practice for Organic Food, (Eds.) D. Biswas, S.A. Micallef, Academic Press, pp. 193-212. Chakraborty, A., Picardal, F. 2013. Induction of nitrate-dependent Fe(II) oxidation by Fe(II) in Dechloromonas sp. strain UWNR4 and Acidovorax sp. strain 2AN. Applied and environmental microbiology, 79(2), 748-752. Chen, C., Kukkadapu, R., Sparks, D.L. 2015. Influence of Coprecipitated Organic Matter on Fe2+(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics. Environmental Science & Technology, 49(18), 10927-10936. Chen, H., Li, X., Hu, F., Shi, W. 2013. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology, 19(10), 2956-2964. Chen, K.-Y., Chen, T.-Y., Chan, Y.-T., Cheng, C.-Y., Tzou, Y.-M., Liu, Y.-T., Teah, H.-Y. 2016. Stabilization of Natural Organic Matter by Short-Range-Order Iron Hydroxides. Environmental Science & Technology, 50(23), 12612-12620. Childs, C.W. 1992. Ferrihydrite: A review of structure, properties and occurrence in relation to soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 155(5), 441-448. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M. 2014. Carbon and other biogeochemical cycles. in: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp. 465-570. Clément, J.C., Shrestha, J., Ehrenfeld, J.G., Jaffé, P.R. 2005. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology & Biochemistry, 37, 2323-2328. Claff, S.R., Sullivan, L.A., Burton, E.D., Bush, R.T. 2010. A sequential extraction procedure for acid sulfate soils: Partitioning of iron. Geoderma, 155(3), 224-230. Colombo, C., Palumbo, G., He, J.-Z., Pinton, R., Cesco, S. 2014. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 14(3), 538-548. Cornell, R.M., Schwertmann, U. 2003. The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-vch Weinheim. Croal, L.R., Johnson, C.M., Beard, B.L., Newman, D.K. 2004. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria 11Associate editor: D. E. Canfield. Geochimica et Cosmochimica Acta, 68(6), 1227-1242. Cui, Y.-f., Meng, J., Wang, Q.-x., Zhang, W.-m., Cheng, X.-y., Chen, W.-f. 2017. Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China. Journal of Integrative Agriculture, 16(5), 1064-1074. Davidson, E.A., Chorover, J., Dail, D.B. 2003. A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology, 9(2), 228-236. Delvaux, B., Tessier, D., Herbillon, A.J., Burtin, G., Jaunet, A.-M., Vielvoye, L. 1992. Morphology, Texture, and Microstructure of Halloysitic Soil Clays as Related to Weathering and Exchangeable Cation. Clays and Clay Minerals, 40(4), 446-456. Echigo, T., Kimata, M. 2008. Single-crystal X-ray diffraction and spectroscopic studies on humboldtine and lindbergite: weak Jahn–Teller effect of Fe2+ ion. Physics and Chemistry of Minerals, 35(8), 467. Effenberger, H., Mereiter, Κ., Zemann, J. 1981. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie-Crystalline Materials, 156(1-4), 233-244. Enami, Y., Okano, S., Yada, H., Nakamura, Y. 2001. Influence of earthworm activity and rice straw application on the soil microbial community structure analyzed by PLFA pattern. European Journal of Soil Biology, 37(4), 269-272. Eusterhues, K., Rumpel, C., Kleber, M., Kögel-Knabner, I. 2003. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry, 34(12), 1591-1600. Ewing, F.J. 1935. The Crystal Structure of Lepidocrocite. The Journal of Chemical Physics, 3(7), 420-424. Fageria, N.K., Carvalho, G.D., Santos, A.B., Ferreira, E.P.B., Knupp, A.M. 2011. Chemistry of Lowland Rice Soils and Nutrient Availability. Communications in Soil Science and Plant Analysis, 42(16), 1913-1933. Fitzpatrick, R., Taylor, U., Childs, C.W. 1985. Occurrence and properties of lepidocrocite in some soils of New Zealand, South Africa and Australia. Australian Journal of Soil Research, 23, 543–567. Francis, A.J., Dodge, C.J. 1993. Influence of complex structure on the biodegradation of iron-citrate complexes. Appl Environ Microbiol, 59(1), 109-13. Fu, B., Chen, L., Huang, H., Qu, P., Wei, Z. 2021. Impacts of crop residues on soil health: a review. Environmental Pollutants and Bioavailability, 33(1), 164-173. Gao, S., Tanji, K.K., Scardaci, S.C. 2004. Impact of rice straw incorporation on soil redox status and sulfide toxicity. Agronomy Journal, 96(1), 70-76. Gao, S., Tanji, K.K., Scardaci, S.C., Chow, A.T. 2002. Comparison of Redox Indicators in a Paddy Soil during Rice-Growing Season. Soil Science Society of America Journal, 66(3), 805-817. Giannetta, B., Balint, R., Said-Pullicino, D., Plaza, C., Martin, M., Zaccone, C. 2020a. Fe(II)-catalyzed transformation of Fe (oxyhydr)oxides across organic matter fractions in organically amended soils. Science of The Total Environment, 748, 141125. Giannetta, B., Plaza, C., Siebecker, M.G., Aquilanti, G., Vischetti, C., Plaisier, J.R., Juanco, M., Sparks, D.L., Zaccone, C. 2020b. Iron Speciation in Organic Matter Fractions Isolated from Soils Amended with Biochar and Organic Fertilizers. Environmental Science & Technology, 54(8), 5093-5101. Glissmann, K., Conrad, R. 2000. Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiology Ecology, 31(2), 117-126. Goodman, -.B.A. 2020. - Utilization of Waste Straw and Husks from Rice Production: A Review. - Journal of Bioresources and Bioproducts, - 5(- 3), - 145. Gotoh, S., Onikura, Y. 1971. Organic acids in a flooded soil receiving added rice straw and their effect on the growth of rice. Soil Science and Plant Nutrition, 17(1), 1-8. Grodzicki, M., Amthauer, G. 2000. Electronic and magnetic structure of vivianite: cluster molecular orbital calculations. Physics and Chemistry of Minerals, 27(10), 694-702. Grzyb, A., Wolna-Maruwka, A., Niewiadomska, A. 2020. Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy, 10(12). Gu, B., Schmitt, J., Chen, Z., Liang, L., McCarthy, J.F. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology, 28(1), 38-46. Gu, Y., Zhang, T., Che, H., Lu, X., Du, Y. 2015. Influence of returning corn straw to soil on soil nematode communities in winter wheat. Acta Ecologica Sinica, 35(2), 52-56. Gustafsson, J.P., Persson, I., Kleja, D.B., Van Schaik, J.W. 2007. Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling. Environ Sci Technol, 41(4), 1232-7. Hamm, R.E., Shull, C.M., Grant, D.M. 1954. Citrate Complexes with Iron(II) and Iron(III)1. Journal of the American Chemical Society, 76(8), 2111-2114. Hansen, A.M., Kraus, T.E.C., Pellerin, B.A., Fleck, J.A., Downing, B.D., Bergamaschi, B.A. 2016. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography, 61(3), 1015-1032. Heckman, K., Lawrence, C.R., Harden, J.W. 2018. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma, 312, 24-35. Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper, K. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53(3), 955-969. Henneberry, Y.K., Kraus, T.E.C., Nico, P.S., Horwath, W.R. 2012. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Organic Geochemistry, 48, 81-89. Hernandez, M.E., Newman, D.K. 2001. Extracellular electron transfer. Cell Mol Life Sci, 58(11), 1562-71. Jang, J.-H., Dempsey, B.A., Burgos, W.D. 2007. Solubility of Hematite Revisited:  Effects of Hydration. Environmental Science & Technology, 41(21), 7303-7308. Jeewani, P.H., Van Zwieten, L., Zhu, Z., Ge, T., Guggenberger, G., Luo, Y., Xu, J. 2021. Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients. Soil Biology and Biochemistry, 160, 108312. Jeon, B.-H., Dempsey, B.A., Burgos, W.D. 2003. Kinetics and Mechanisms for Reactions of Fe(II) with Iron(III) Oxides. Environmental Science & Technology, 37(15), 3309-3315. Jin, Z., Shah, T., Zhang, L., Liu, H., Peng, S., Nie, L. 2020. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food and Energy Security, 9(2), e200. Johnson, S.E., Angeles, O.R., Brar, D.S., Buresh, R.J. 2006. Faster anaerobic decomposition of a brittle straw rice mutant: Implications for residue management. Soil Biology and Biochemistry, 38(7), 1880-1892. Jung, E. 1943. Zur Kenntnis der Ton-Humusbindung. Bodenkunde und Pflanzenernährung, 32(6), 325-336. Kögel-Knabner, I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34(2), 139-162. Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kölbl, A., Schloter, M. 2010. Biogeochemistry of paddy soils. Geoderma, 157(1), 1-14. Khaidem, J., Thounaojam, T., Meetei, T.T. 2018. Influence of soil pH on nutrient availability: A Review. 707. Kleber, M., Mikutta, R., Torn, M.S., Jahn, R. 2005. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. European Journal of Soil Science, 56(6), 717-725. Kleber, M., Sollins, P., Sutton, R. 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85(1), 9-24. Kostka, J.E., Wu, J., Nealson, K.H., Stucki, J.W. 1999. The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta, 63(22), 3705-3713. Krishnamurti, G.S.R., Huang, P.M. 1991. Influence of Citrate on the Kinetics of Fe(II) Oxidation and the Formation of Iron Oxyhydroxides. Clays and Clay Minerals, 39(1), 28-34. Krug, E.C., Frink, C.R. 1983. Acid Rain on Acid Soil: A New Perspective. Science, 221(4610), 520-525. Kunlanit, B., Vityakon, P., Puttaso, A., Cadisch, G., Rasche, F. 2014. Mechanisms controlling soil organic carbon composition pertaining to microbial decomposition of biochemically contrasting organic residues: Evidence from midDRIFTS peak area analysis. Soil Biology and Biochemistry, 76, 100-108. Lalonde, K., Mucci, A., Ouellet, A., Gélinas, Y. 2012. Preservation of organic matter in sediments promoted by iron. Nature, 483(7388), 198-200. Larese-Casanova, P., Haderlein, S.B., Kappler, A. 2010. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids. Geochimica et Cosmochimica Acta, 74(13), 3721-3734. Le Mer, J., Roger, P. 2001. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(1), 25-50. Li, F., Cao, X., Zhao, L., Yang, F., Wang, J., Wang, S. 2013. Short-term effects of raw rice straw and its derived biochar on greenhouse gas emission in five typical soils in China. Soil Science and Plant Nutrition, 59(5), 800-811. Li, H., Cao, Y., Wang, X., Ge, X., Li, B., Jin, C. 2017. Evaluation on the Production of Food Crop Straw in China from 2006 to 2014. BioEnergy Research, 10(3), 949-957. Li, H., Dai, M., Dai, S., Dong, X. 2018. Current status and environment impact of direct straw return in China’s cropland – A review. Ecotoxicology and Environmental Safety, 159, 293-300. Li, Y., Yu, S., Strong, J., Wang, H. 2012. Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? Journal of Soils and Sediments, 12(5), 683-693. Lindsay, W.L. 1991. Iron oxide solubilization by organic matter and its effect on iron availability. Plant and Soil, 130(1), 27-34. Liu, C., Lu, M., Cui, J., Li, B., Fang, C. 2014. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biology, 20(5), 1366-1381. Liu, C., Wang, K., Meng, S., Zheng, X., Zhou, Z., Han, S., Chen, D., Yang, Z. 2011. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agriculture, Ecosystems & Environment, 140(1), 226-233. Liu, T., Chen, X., Hu, F., Ran, W., Shen, Q., Li, H., Whalen, J.K. 2016. Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agriculture, Ecosystems & Environment, 232, 199-207. Lou, Y., Liang, W., Xu, M., He, X., Wang, Y., Zhao, K. 2011. Straw coverage alleviates seasonal variability of the topsoil microbial biomass and activity. CATENA, 86(2), 117-120. Lovley, D.R. 1995. MICROBIAL REDUCTION OF IRON, MANGANESE, AND OTHER METALS. Advances in Agronomy, 54, 175-231. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., Woodward, J.C. 1996. Humic substances as electron acceptors for microbial respiration. Nature, 382(6590), 445-448. Lovley, D.R., Phillips, E.J. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and environmental microbiology, 54(6), 1472-1480. Lovley, D.R., Ueki, T., Zhang, T., Malvankar, N.S., Shrestha, P.M., Flanagan, K.A., Aklujkar, M., Butler, J.E., Giloteaux, L., Rotaru, A.-E., Holmes, D.E., Franks, A.E., Orellana, R., Risso, C., Nevin, K.P. 2011. Geobacter: The Microbe Electric's Physiology, Ecology, and Practical Applications. in: Advances in Microbial Physiology, (Ed.) R.K. Poole, Vol. 59, Academic Press, pp. 1-100. Lu, F., Wang, X., Han, B., Ouyang, Z., Duan, X., Zheng, H. 2010. Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model. Ecological Applications, 20(3), 634-647. Ma, J., Zhang, K., Huang, M., Hector, S.B., Liu, B., Tong, C., Liu, Q., Zeng, J., Gao, Y., Xu, T., Liu, Y., Liu, X., Zhu, Y. 2016. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnology for Biofuels, 9(1), 211. Majzlan, J., Koch, C.B., Navrotsky, A. 2008. Thermodynamic properties of feroxyhyte (δ′-FeOOH). Clays and Clay Minerals, 56(5), 526-530. Maranguit, D., Guillaume, T., Kuzyakov, Y. 2017. Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: Short-term effects and mechanisms. CATENA, 158, 161-170. Matta, R., Hanna, K., Chiron, S. 2008. Oxidation of phenol by green rust and hydrogen peroxide at neutral pH. Separation and Purification Technology, 61, 442-446. Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., Kappler, A. 2014. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 12(12), 797-808. Merino, C., Matus, F., Kuzyakov, Y., Dyckmans, J., Stock, S., Dippold, M.A. 2021. Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions. Science of The Total Environment, 760, 143397. Metz, B., Davidson, O., Bosch, P., Dave, R., Meyer, L. 2007. Climate change 2007-mitigation of climate change. Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working …. Mikutta, C., Frommer, J., Voegelin, A., Kaegi, R., Kretzschmar, R. 2010. Effect of citrate on the local Fe coordination in ferrihydrite, arsenate binding, and ternary arsenate complex formation. Geochimica et Cosmochimica Acta, 74(19), 5574-5592. Miot, J., Benzerara, K., Morin, G., Kappler, A., Bernard, S., Obst, M., Férard, C., Skouri-Panet, F., Guigner, J.-M., Posth, N., Galvez, M., Brown, G.E., Guyot, F. 2009. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica et Cosmochimica Acta, 73(3), 696-711. Miyagi, A., Noguchi, K., Tokida, T., Usui, Y., Nakamura, H., Sakai, H., Hasegawa, T., Kawai-Yamada, M. 2019. Oxalate contents in leaves of two rice cultivars grown at a free-air CO2 enrichment (FACE) site. Plant Production Science, 22(3), 407-411. Molinuevo-Salces, B., Gómez, X., Morán, A., García-González, M.C. 2013. Anaerobic co-digestion of livestock and vegetable processing wastes: Fibre degradation and digestate stability. Waste Management, 33(6), 1332-1338. Morris, R.V., Golden, D.C., Shelfer, T.D., Lauer Jr, H.V. 1998. Lepidocrocite to maghemite to hematite: A pathway to magnetic and hematitic Martian soil. Meteoritics & Planetary Science, 33(4), 743-751. Mothe, S., Polisetty, V.R. 2021. Review on anaerobic digestion of rice straw for biogas production. Environmental Science and Pollution Research, 28(19), 24455-24469. Mouhamad, R., Atiyah, A., Mohammad, R. 2015. Decomposition of organic matter under different soil textures. 1. Mussoline, W., Esposito, G., Giordano, A., Lens, P. 2013. The Anaerobic Digestion of Rice Straw: A Review. Critical Reviews in Environmental Science and Technology, 43(9), 895-915. Nevin Kelly, P., Lovley Derek, R. 2002. Mechanisms for Accessing Insoluble Fe(III) Oxide during Dissimilatory Fe(III) Reduction by Geothrix fermentans. Applied and Environmental Microbiology, 68(5), 2294-2299. Nevin, K.P., Lovley, D.R. 2002. Mechanisms for Fe(III) Oxide Reduction in Sedimentary Environments. Geomicrobiology Journal, 19(2), 141-159. Newman, D.K., Kolter, R. 2000. A role for excreted quinones in extracellular electron transfer. Nature, 405(6782), 94-7. Nguyen Vo Chau, N., Chan, F., Tran, N., Thao, H., Detras, M.C., Hung, D., Cuong, D., Nguyen, V.H. 2020. Anaerobic Digestion of Rice Straw for Biogas Production, pp. 65-92. Nriagu, J.O. 1972. Stability of vivianite and ion-pair formation in the system fe3(PO4)2-H3PO4H3PO4-H2o. Geochimica et Cosmochimica Acta, 36(4), 459-470. Ono, K., Hiradate, S., Morita, S., Ohse, K., Hirai, K. 2011. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant and Soil, 338(1), 171-181. Park, B., Dempsey, B.A. 2005. Heterogeneous Oxidation of Fe(II) on Ferric Oxide at Neutral pH and a Low Partial Pressure of O2. Environmental Science & Technology, 39(17), 6494-6500. Patrick Jr, W.H., Jugsujinda, A. 1992. Sequential Reduction and Oxidation of Inorganic Nitrogen, Manganese, and Iron in Flooded Soil. Soil Science Society of America Journal, 56(4), 1071-1073. Piasecki, W., Szymanek, K., Charmas, R. 2019. Fe2+ adsorption on iron oxide: the importance of the redox potential of the adsorption system. Adsorption, 25(3), 613-619. Prather, M. 1995. Other trace gases and atmospheric chemistry. Climate change, 77-126. Rathje. 1959. Jackson, M. L.: Soil chemical analysis. Verlag: Prentice Hall, Inc., Englewood Cliffs, NJ. 1958, 498 S. DM 39.40. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 85(3), 251-252. Ravel, B., Newville, M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat, 12(Pt 4), 537-41. Rickard, D., Luther, G.W. 2007. Chemistry of Iron Sulfides. Chemical Reviews, 107(2), 514-562. Sahrawat, K.L. 2005. Fertility and organic matter in submerged rice soils. Current Science, 88(5), 735-739. Saritha, A., Raju, B., Ramachary, M., Raghavaiah, P., Hussain, K.A. 2012. Synthesis, crystal structure and characterization of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III). Physica B: Condensed Matter, 407(21), 4208-4213. Schaefer, M.V., Gorski, C.A., Scherer, M.M. 2011. Spectroscopic Evidence for Interfacial Fe(II)−Fe(III) Electron Transfer in a Clay Mineral. Environmental Science & Technology, 45(2), 540-545. Schwertmann, U., Thalmann, H. 1976. The Influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Minerals, 11(3), 189-200. Sel, O., Radha, A.V., Dideriksen, K., Navrotsky, A. 2012. Amorphous iron (II) carbonate: Crystallization energetics and comparison to other carbonate minerals related to CO2 sequestration. Geochimica et Cosmochimica Acta, 87, 61-68. Shapiro, S.S., Wilk, M.B. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591-611. Sharma, B.D., Chahal, D.S., Singh, P.K., Raj‐Kumar. 2008. Forms of Iron and Their Association with Soil Properties in Four Soil Taxonomic Orders of Arid and Semi‐arid Soils of Punjab, India. Communications in Soil Science and Plant Analysis, 39(17-18), 2550-2567. She, R., Yu, Y., Ge, C., Yao, H. 2021. Soil Texture Alters the Impact of Salinity on Carbon Mineralization. Agronomy, 11, 128. Si, C., Xue, W., Guo, Z.-W., Zhang, J.-F., Hong, M.-M., Wang, Y.-Y., Lin, J., Yu, F.-H. 2021. Soil heterogeneity and earthworms independently promote growth of two bamboo species. Ecological Indicators, 130, 108068. Smolders, A.J.P., Lucassen, E., Bobbink, R., Roelofs, J., Lamers, L.P.M. 2010. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry, 98(1-3), 1-7. Stanjek, H. 1987. The formation of maghemite and hematite from lepidocrocite and goethite in a Cambisol from Corsica, France. Zeitschrift für Pflanzenernährung und Bodenkunde, 150(5), 314-318. Stookey, L.L. 1970. Ferrozine---a new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 779-781. Straub, K.L., Benz, M., Schink, B., Widdel, F. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62(4), 1458-1460. Strickland, T.C., Sollins, P., Rudd, N., Schimel, D.S. 1992. Rapid stabilization and mobilization of 15N in forest and range soils. Soil Biology and Biochemistry, 24(9), 849-855. Stucki, J.W., Bailey, G.W., Gan, H. 1996. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Applied Clay Science, 10(6), 417-430. Tamrat, W.Z., Rose, J., Grauby, O., Doelsch, E., Levard, C., Chaurand, P., Basile-Doelsch, I. 2019. Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands. Geochimica et Cosmochimica Acta, 260, 15-28. Tanji, K.K., Gao, S., Scardaci, S.C., Chow, A.T. 2003. Characterizing redox status of paddy soils with incorporated rice straw. Geoderma, 114(3), 333-353. ThomasArrigo, L.K., Byrne, J.M., Kappler, A., Kretzschmar, R. 2018. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite–Organic Matter Coprecipitates. Environmental Science & Technology, 52(21), 12316-12326. ThomasArrigo, L.K., Kaegi, R., Kretzschmar, R. 2019. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands. Environmental Science & Technology, 53(23), 13636-13647. ThomasArrigo, L.K., Mikutta, C., Byrne, J., Kappler, A., Kretzschmar, R. 2017. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study. Environmental Science & Technology, 51(12), 6897-6907. Trumbore, S.E., Zheng, S. 1996. Comparison of Fractionation Methods for Soil Organic Matter 14C Analysis. 38(2), 219 - 229. Turick, C.E., Tisa, L.S., Caccavo, F., Jr. 2002. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Applied and environmental microbiology, 68(5), 2436-2444. Usman, M., Hanna, K., Abdelmoula, M., Zegeye, A., Faure, P., Ruby, C. 2012. Formation of green rust via mineralogical transformation of ferric oxides (ferrihydrite, goethite and hematite). Applied Clay Science, 64, 38-43. van Groenigen, K.J., Osenberg, C.W., Hungate, B.A. 2011. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature, 475(7355), 214-216. van Oort, F., Paradelo, R., Baize, D., Chenu, C., Delarue, G., Guérin, A., Proix, N. 2022. Can long-term fertilization accelerate pedogenesis? Depicting soil processes boosted by annual NPK-inputs since 1928 on bare loess Luvisol (INRAE-Versailles). Geoderma, 416, 115808. Van Soest, P., Wine, R. 1968. Determination of lignin and cellulose in acid-detergent fiber with permanganate. Journal of the association of official analytical chemists, 51(4), 780-785. Vargas, M., Glaz, B., Alvarado, G., Pietragalla, J., Morgounov, A., Zelenskiy, Y., Crossa, J. 2014. Analysis and Interpretation of Interactions in Agricultural Research. Agronomy Journal, 106, 1-15. Vehmaanperä, P., Gong, B., Sit, P., Salmimies, R., Barbiellini, B., Häkkinen, A. 2021. FORMATION OF HUMBOLDTINE DURING THE DISSOLUTION OF HEMATITE IN OXALIC ACID – DENSITY FUNCTIONAL THEORY (DFT) CALCULATIONS AND EXPERIMENTAL VERIFICATION. Clays and Clay Minerals. Wang, E., Lin, X., Tian, L., Wang, X., Ji, L., Jin, F., Tian, C. 2021. Effects of Short-Term Rice Straw Return on the Soil Microbial Community. Agriculture, 11(6), 561. Wang, H., Wu, Y., Liu, J., Qian, Q. 2006. Morphological fractions, chemical compositions and in vitro gas production of rice straw from wild and brittle culm1 variety harvested at different growth stages. Animal Feed Science and Technology, 129(1), 159-171. Wang, W., Li, L., Wu, K., Zhang, K., Jie, J., Yang, Y. 2015a. Preparation of Ni–Mo–S catalysts by hydrothermal method and their hydrodeoxygenation properties. Applied Catalysis A: General, 495, 8-16. Wang, X., Yang, H., Liu, J., Wu, J., Chen, W., Wu, J., Zhu, L., Bian, X. 2015b. Effects of ditch-buried straw return on soil organic carbon and rice yields in a rice–wheat rotation system. CATENA, 127, 56-63. Wang, X., Yang, Z., Liu, X., Huang, G., Xiao, W., Han, L. 2020. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag, 110, 87-97. Weber, K.A., Achenbach, L.A., Coates, J.D. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4(10), 752-764. Wen, Y., Xiao, J., Goodman, B.A., He, X. 2019. Effects of Organic Amendments on the Transformation of Fe (Oxyhydr)Oxides and Soil Organic Carbon Storage. Frontiers in Earth Science, 7. Wershaw, R. 1993. Model for Humus in Soils and Sediments. Environmental Science & Technology, 27(5), 814-816. Wershaw, R.L., Llaguno, E.C., Leenheer, J.A. 1996. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 108(2-3), 213-223. Winkler, P., Kaiser, K., Thompson, A., Kalbitz, K., Fiedler, S., Jahn, R. 2018. Contrasting evolution of iron phase composition in soils exposed to redox fluctuations. Geochimica et Cosmochimica Acta, 235, 89-102. Wordofa, D.N., Adhikari, D., Dunham-Cheatham, S.M., Zhao, Q., Poulson, S.R., Tang, Y., Yang, Y. 2019. Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction. Science of The Total Environment, 668, 216-223. Xing, B., Graham, N., Yu, W. 2020. Transformation of siderite to goethite by humic acid in the natural environment. Communications Chemistry, 3(1), 38. Yan, X., Cai, Z., Ohara, T., Akimoto, H. 2003. Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. Journal of Geophysical Research: Atmospheres, 108(D16). Yan, X., Yagi, K., Akiyama, H., Akimoto, H. 2005. Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology, 11(7), 1131-1141. Yu, G.-H., Kuzyakov, Y. 2021. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth-Science Reviews, 214, 103525. Yu, K., Patrick, W.H. 2003. Redox Range with Minimum Nitrous Oxide and Methane Production in a Rice Soil under Different pH. Soil Science Society of America Journal, 67(6), 1952-1958. Zhang, J., Hang, X., Lamine, S.M., Jiang, Y., Afreh, D., Qian, H., Feng, X., Zheng, C., Deng, A., Song, Z. 2017. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system. Agriculture, Ecosystems & Environment, 250, 37-43. Zhang, W., Faulkner, J.W., Giri, S.K., Geohring, L.D., Steenhuis, T.S. 2010. Effect of Soil Reduction on Phosphorus Sorption of an Organic-Rich Silt Loam. Soil Science Society of America Journal, 74(1), 240-249. Zhao, S., He, P., Qiu, S., Jia, L., Liu, M., Jin, J., Johnston, A.M. 2014. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China. Field Crops Research, 169, 116-122. Zhao, X., Yuan, G., Wang, H., Lu, D., Chen, X., Zhou, J. 2019. Effects of Full Straw Incorporation on Soil Fertility and Crop Yield in Rice-Wheat Rotation for Silty Clay Loamy Cropland. Agronomy, 9(3). Zhao, X., Zhou, Y., Wang, L., Li, M., Shi, D., Li, D., Wang, J. 2017. Shikonin alleviates the biotoxicity produced by pneumococcal pneumolysin. Life Sciences, 177, 1-7. Zhao, Y., Wang, P., Li, J., Chen, Y., Ying, X., Liu, S. 2009. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. European Journal of Agronomy, 31(1), 36-42. Zhou, Z., Latta, D.E., Noor, N., Thompson, A., Borch, T., Scherer, M.M. 2018. Fe(II)-Catalyzed Transformation of Organic Matter–Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes. Environmental Science & Technology, 52(19), 11142-11150.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85376-
dc.description.abstract  稻稈返田做為去化農業廢棄物的手段已經行之有年且已被證實對土壤營養卓有成效,然而因為水稻產地大多一年多穫,使未分解完全的稻稈在再度進水後因微生物大量產生而出現溫室氣體、植物病蟲害等問題影響生產,即便使用基因改造提升稻稈可分解的程度,也會造成其他副作用如更大量的碳排放等;部分前人研究則指出鐵的物種可固定土壤中的有機質避免流失,且可大幅影響營養元素的有效性,其作用機制來自於微生物造成的氧化還原反應,因此也有將土壤中出現的鐵物種納入評估施肥成效的呼聲。   本研究透過為期84日,使用兩種質地不同但 pH 相近的酸性土壤,以及三種不同脆性稻稈,以模擬水田環境下稻稈返田的孵育實驗,企圖審視稻稈脆性對於稻稈分解的影響,以及添加稻稈時對於土壤中鐵物種變化的作用為何。從實驗結果中得知,在浸水孵育的過程中無論土系,土壤溶液中的鐵濃度與有機碳濃度都是以與中洗纖維含量最低的SA1064稻稈(Brittleness = 3)孵育組為最高,且都在孵育三週後濃度開始降低,然而其代表芳香環物質濃度的254 nm吸光值則未有下降跡象,同時代表有機物分子量的SR值則顯示土壤溶液的有機物分子量隨孵育時間上升;鐵序列萃取結果顯示平鎮系土壤內氧化鐵物種的結晶性會被破壞且在有添加稻稈時現象更為明顯,不過與稻稈脆性無關,而XANES圖譜顯示無水的氧化鐵在孵育過程中變成氫氧化鐵,而有添加稻稈時鐵的配位結構則較容易停留於氫氧化鐵;同樣的序列萃取則顯示台南系土壤氧化鐵物種的結晶性雖未顯著被破壞,但隨時間增加,還原性的二價鐵礦物結晶含量則緩慢上升,XANES圖譜則顯示台南系土壤的二價鐵與三價鐵之間在孵育過程出現消長,而中洗纖維含量最少的Tn B=3處理的消長週期則為最長,顯示處理中較多的溶液有機碳可能具有還原性以穩定鐵物種。   透過土壤溶液中鐵與有機物的基本分析、鐵序列萃取以及同步輻射數據,本研究歸納出土壤中可能的鐵物種變化途徑,並指出在浸水土壤進行稻稈返田的過程中,稻稈中洗纖維含量相對於脆性,更可能是影響土壤溶液性質與土壤鐵物種最主要的因子。zh_TW
dc.description.abstractReturning rice straw to the field has been proved to be an effective strategy for improving soil fertility. However, because rice is harvested more than once a year in most of the rice-producing areas, the rice straw which cannot be completely decomposed in the intermittent period could result in the production of greenhouse gas or the occurrences of disease and pests that can damage the subsequent rice production. Although gene modification could enhance the degradability of rice straw there would be several adverse side effects, such as far more carbon emissions to the environment. Previous studies suggested that Fe species relate to fixation of organic matter in the soil and strongly affect the availabilities of nutrients. Thus, it is essential to determine Fe speciation to assess fertilization effectiveness of rice straw returned to paddy field. In this study, three types of rice straw (1 wild type and 2 mutants mutated by sodium azide) with different brittlenesses were mixed with two different paddy soils and then incubated under submerging conditions for 84 days to investigate how straw brittleness affect its degradation and its impact on the transformation of Fe species as a function of soil submergence time. The result showed that, regardless of soil type, the treatments with rice straw SA1064, brittleness = 3, had the most dissolved Fe and dissolved organic carbon (DOC) concentration. Dissolved Fe and DOC concentrations both increased to maximum at 21 days and then decreased until the end. However, soil solution’s concentration of aromatic compounds did not decrease, while the molecular weight of DOC increased during the incubation process. The results of Fe sequential extraction showed that the crystallinity of Fe species in Pc soil decreased during the incubation regardless of brittleness. XANES-LCF showed that iron hydroxide species were transformed from anhydrous iron oxide, and it was more likely for Fe to stay in hydroxide forms with the presence of rice straw. However, the crystallinity of Fe species in Tn soil did not significantly decrease during the incubation, but well-crystalline Fe(II) minerals were formed over time. XANES-LCF showed that Fe(II) and Fe(III) species fluctuated by time, and the treatment with the least neutral detergent fiber content (Tn B=3) had the longest fluctuation period among all the treatments, which indicated that the a larger amount of DOC in such treatment stabilize the reduced Fe species. Through soil solution analysis, Fe sequential extraction, and XANES analysis, the results revealed the transformation pathways of Fe species in soils.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:15:55Z (GMT). No. of bitstreams: 1
U0001-2507202215500200.pdf: 4564419 bytes, checksum: 4fb207e4a5484ca4fe150470ade129c0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 I Abstract III 目錄 V 圖目錄 IX 表目錄 XII 第一章、前言 1 第二章、文獻回顧 3 2.1. 酸性土壤特性 3 2.1.1. 強酸性土壤成因與臺灣分布情形 3 2.1.2. 土壤質地 3 2.2. 浸水土壤特性 3 2.2.1. 氧化還原電位 3 2.2.2. pH值 4 2.3. 土壤氧化鐵 5 2.3.1. 土壤氧化鐵物種、分布 5 2.3.2. 鐵在土壤氧化還原循環扮演的角色 5 2.3.3. 土壤鐵的碳固定機制 6 2.3.4. 厭氧環境中有機質對土壤鐵的化學影響 8 2.3.5. 厭氧環境中鐵與土壤有機質的生物化學反應 10 2.4. 臺灣農業廢棄物現況 12 2.5. 稻稈返田對土壤之影響 13 2.5.1. 稻稈組成 13 2.5.2. 稻稈返田對土壤造成的影響 14 2.5.3. 稻稈返田與溫室氣體釋出 16 2.5.4. 稻稈返田的可能危害 17 第三章、材料與方法 19 3.1. 試驗材料 19 3.1.1. 供試土壤來源 19 3.1.2. 稻稈來源 19 3.2. 稻稈基本分析 19 3.3. 孵育試驗 20 3.3.1. 孵育裝置及條件 20 3.3.2. 取樣方法及樣品保存 21 3.4. 土壤溶液分析 22 3.4.1. 二價鐵與三價鐵分析 22 3.4.2. 有機質紫外線-可見光吸收光譜分析 22 3.4.3. 可溶性有機碳分析 23 3.5. 土壤樣品分析 23 3.5.1. 鐵序列萃取分析 23 3.5.2. 元素分析儀分析 25 3.5.3. X光吸收光譜 25 3.6. 數據處理 26 第四章、實驗結果 28 4.1. 土壤及稻稈基本性質 28 4.1.1. 土壤基本性質 28 4.1.2. 稻稈基本性質 30 4.2. 浸水孵育期間pH、Eh動力學 32 4.3. 土壤溶液 36 4.3.1. 總鐵 36 4.3.2. 可溶有機碳 42 4.3.3. 芳香度指標 (SUVA254) 47 4.3.4. SR值 54 4.4. 總量分析 61 4.4.1. 碳 61 4.4.2. 氮 66 4.4.3. 碳氮比 69 4.5. 土壤鐵序列萃取 73 4.5.1. 平鎮系之鐵序列萃取 73 4.5.2. 台南系之鐵序列萃取 82 4.6. 土壤及稻稈共孵育之Fe K-edge XANES圖譜 90 4.6.1. 平鎮系系之Fe K-edge XANES圖譜 90 4.6.2. 台南系系之Fe K-edge XANES圖譜 103 4.7. 各測項間及各測項孵育時間對處理交感效應間之相關性 113 4.7.1. 平鎮系系各測項間相關性 113 4.7.2. 平鎮系系各測項的孵育時間對處理交感效應間之相關性 116 4.7.3. 台南系系各測項間相關性 118 4.7.4. 台南系系各測項的孵育時間對處理交感效應間之相關性 121 第五章、綜合討論 123 5.1. 土壤與稻稈浸水共孵育期間的鐵物種變化 123 5.1.1. 平鎮系的鐵物種變化 123 5.1.2. 台南系的鐵物種變化 127 5.2. 稻稈種類於與土壤浸水共孵育期間造成的影響 131 5.2.1. 稻稈分解過程概述 131 5.2.2. 稻稈種類對平鎮系鐵物種變化的影響 134 5.2.3. 稻稈種類對台南系鐵物種變化的影響 138 第六章、結論 141 第七章、參考文獻 143
dc.language.isozh-TW
dc.subject稻稈返田zh_TW
dc.subject鐵物種zh_TW
dc.subject序列萃取zh_TW
dc.subject線性擬合zh_TW
dc.subjectX光吸收近邊緣結構zh_TW
dc.subjectLinear combination fittingen
dc.subjectStraw returnen
dc.subjectFe speciesen
dc.subjectXANESen
dc.subjectSequential extractionen
dc.title稻稈添加對浸水土壤中鐵物種變化的作用zh_TW
dc.titleEffects of rice straw addition on iron speciation in flooded soilsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江博能(Po-Neng Chiang),葉國楨(Kuo-Chen Yeh),林政賢(Cheng-Hsien Lin)
dc.subject.keywordX光吸收近邊緣結構,線性擬合,序列萃取,稻稈返田,鐵物種,zh_TW
dc.subject.keywordXANES,Linear combination fitting,Sequential extraction,Straw return,Fe species,en
dc.relation.page156
dc.identifier.doi10.6342/NTU202201702
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
dc.date.embargo-lift2022-07-29-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-2507202215500200.pdf4.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved