Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85374
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙修武(Shiu-Wu Chau)
dc.contributor.authorWei-Hsuan Panen
dc.contributor.author潘韋亘zh_TW
dc.date.accessioned2023-03-19T23:15:53Z-
dc.date.copyright2022-10-20
dc.date.issued2022
dc.date.submitted2022-09-30
dc.identifier.citation[1] Bureau of energy, Ministry of Economic Affairs. https://www.moeaboe.gov.tw [2] Lu, S. D., Ho, W. C., Lu, W. H., Hu, C. K., Chen, M. L., Lien, Y. S. (2015). A Research on the Potential Energy of Offshore Wind Power and Preferable Offshore Blocks in Taiwan. In Preceedings of the 36th Symposium on Electrical Power Engineering, Taoyuan, Taiwan, 1-6. [3] 陳美蘭、胡哲魁,臺灣地區風能評估與離岸風電開發潛能分析,中華技術,103,(38-49),2014。 [4] Dabiri, J. O. (2011). Potential Order-of-magnitude Enhancement of Wind Farm Power Density via Counter-rotating Vertical-axis Wind Turbine Arrays. Journal of Renewable and Sustainable Energy, 3(4). [5] Chamorro, L. P., Porté-Agel, F. (2009). A Wind-tunnel Investigation of Wind Turbine Wakes: Boundary-layer Turbulence Effects. Boundary-layer Meteorology, 132(1), 129-149. [6] Lee, S., Churchfield, M., Moriarty, P., Jonkman, J., Michalakes, J. (2012). Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 540. [7] Frandsen, S., Th.gersen, M. L. (1999). Integrated Fatigue Loading for Wind Turbines in Wind Farms by Combining Ambient Turbulence and Wakes. Wind Engineering, 327-339. [8] Thomsen, K., S.rensen, P. (1999). Fatigue Loads for Wind Turbines Operating in Wakes. Journal of Wind Engineering and Industrial Aerodynamics, 80, 121-136. [9] Jensen, N. O. (1983). A Note on Wind Generator Interaction. Vol. 2411(Ris. National Laboratory). [10] Larsen, G. C. (1988). A Simple Wake Calculation Procedure. (Ris. National Laboratory). [11] Frandsen, S., Barthelmie, R., Pryor, S., Rathmann, O., Larsen, S., H.jstrup, J., Th.gersen, M. (2006). Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 9, 39-53. [12] Nelson, B., Lin, T. Y., Hou, C. L. (2019). Wind Farm Flow Field Prediction for Real-time Energy Yield Assessment. Taiwan Wind Energy Association. [13] Hou, P., Hu, W., Soltani, M., Chen, Z. (2015). Optimized Placement of Wind Turbines in Large-Scale Offshore Wind Farm Using Particle Swarm Optimization Algorithm. IEEE Transactions on Sustainable Energy, 6(4), 1272-1282. [14] Shakoor, R., Hassan, M. Y., Raheem, A., Wu, Y. K. (2016). Wake Effect Modeling: A Review of Wind Farm Layout Optimization Using Jensen's Model. Renewable and Sustainable Energy Reviews, 58, 1048-1059. [15] 趙修武、林宇、李念澤,水平軸離岸風機雙向流固耦合氣動力特性分析,台灣風能學術研討會,台北,2014。 [16] Mo, J. O., Choudhry, A., Arjomandi, M., Lee, Y. H. (2013). Large Eddy Simulation of the Wind Turbine Wake Characteristics in the Numerical Wind Tunnel Model. Journal of Wind Engineering and Industrial Aerodynamics, 112, 11-24. [17] Crasto, G., Gravdahl, A., Castellani, F., Piccioni, E. (2012). Wake Modeling with the Actuator Disc Concept. Energy Procedia, 24, 385-392. [18] Martinez, L., Leonardi, S., Churchfield, M., Moriarty, P. (2012). A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and Best Practices for Their Use. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. [19] Van der Laan, Maarten, P., S.rensen, N. N. (2017). Why the Coriolis Force Turns a Wind Farm Wake Clockwise in the Northern Hemisphere. Wind Energy Science, 2(1), 285-294. [20] Lee, K. K. (2018) A Wake Model for Wind Turbine Power Prediction. Master’s thesis, Department of Engineering Science and Ocean Eigineering, National Taiwan University, Taiwan. [21] Chiang, Y. C. (2019) Wind Farm Power Prediction via Actuator Disk Model. Master’s thesis, Department of Engineering Science and Ocean Eigineering, National Taiwan University, Taiwan. [22] Wu, Y. T., Lin, C. Y., Huang, C. E., Lyu, S. D. (2019). Investigation of Multiblade Wind-Turbine Wakes in Turbulent Boundary Layer. Journal of Energy Engineering, 145(6). [23] Wu, Y. T., Liao, T. L., Chen, C. K., Lin, C. Y., Chen, P. W. (2019). Power Output Efficiency in Large Wind Farms with Different Hub Heights and Configurations. Renewable Energy, 132, 941-949. [24] Tung, C. P. (2017). A WRF-based Numerical Investigation of Wind Field by Boundary Condition with Power Law and Particle Tracking Method. Master’s thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Taiwan. [25] Bleeg, J., Purcell, M., Ruisi, R., & Traiger, E. (2018). Wind farm blockage and the consequences of neglecting its impact on energy production. Energies, 11(6), 1609. [26] Nygaard, N. G., Steen, S. T., Poulsen, L., & Pedersen, J. G. (2020, September). Modelling cluster wakes and wind farm blockage. In Journal of Physics: Conference Series (Vol. 1618, No. 6, p. 062072). IOP Publishing. [27] Hsu, Y. C. (2021) Wind Farm Prediction via a Large Eddy Simulation Approach. Master’s thesis, Department of Engineering Science and Ocean Eigineering, National Taiwan University, Taiwan. [28] B.rresen, J. A., Wind atlas for the North Sea and the Norwegian Sea, Norwegian University Press/The Norwegian Meteorological Institute, 1987. [29] Troen, I., and Petersen, E. L., European wind atlas, Ris. National Laboratory, 1989. [30] Ferziger, J. H., Perić, M., Street, R. L. (2002). Computational Methods for Fluid Dynamics. Vol. 3, 196-200, Berlin: springer. [31] Chiang, Y. C., Hsu, Y. C., Chau, S. W. (2020). Power Prediction of Wind Farms via a Simplified Actuator Disk Model. Journal of Marine Science and Engineering, 8(8), 610. [32] Hsu, S. A., Meindl, E. A., Gilhousen, D. B. (1994). Determining the Power Law Wind-profile Exponent under Near-neutral Stability Conditions at Sea. Journal of Applied Meteorology and Climatology, 33(6), 757-765. [33] Richardson, L. F. (1911). The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam. Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Mathematical or Physical Character, 210(459-470), 307-357. [34] Google Map. https://www.google.com/maps/@23.6628669,120.1442067,13794m/data=!3m1!1e3 [35] 4COffshore. https://map.4coffshore.com/offshorewind/ [36] 風力發電單一服務窗口 https://www.twtpo.org.tw/offshore_show.aspx?id=963 [37] Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., ... , Natarajan, A. (2013). The DTU 10-MW Reference Wind Turbine. In Danish Wind Power Research 2013. [38] Meteorological-Information Based Green Energy Operations Center. https://greenmet.cwb.gov.tw/product_description/sun_wrf [39] Google Map. https://www.google.com/maps/@24.0669808,120.0723712,220018m/data=!3m1!1e3 [40] Zhu, B., Chen, M. Y., Wade, N., Ran, L. (2012). A Prediction Model for Wind Farm Power Generation based on Fuzzy Modeling. Procedia Environmental Sciences, 12, 122-129.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85374-
dc.description.abstract本研究使用基於穩態不可壓縮流雷諾平均納維斯托克斯方程組與致動盤模型的WIFA3D程式研究臺灣彰濱離岸風力發電場間的干涉效應,其中WIFA3D程式藉由求解連續方程式及動量守恆方程式以及k-ε紊流模型,模擬風力發電場中風機周圍的流場。首先使用四湖風力發電場的年容量因子驗證WIFA3D程式的精確度,發現預測值與量測值的誤差約為6.5%。本研究的目標風力發電場聚落包含彰濱外海的10座離岸風力發電場,採用DTU 10MW風機作為各個風力發電場內預計安裝的目標風機。本研究藉由模擬目標風力發電場在WRF風況資料下,周圍風力發電場干涉對目標風力發電場的年容量因子以及年容量因子損失的影響。在主要風向下,若兩側皆具有相鄰風力發電場的條件下,目標風力發電場年容量因子損失的最大值小於3%;在主要風向下,若僅單邊存在相鄰風力發電場,目標風場的年容量因子損失約為1%;在主要風向下,目標風力發電場前方若有其他的風力發電場存在,將產生10%以上的年容量因子損失。若在風力發電場單獨存在的條件下,風力發電場1至10的年容量因子分別為0.487、0.522、0.523、0.523、0.524、0.526、0.524、0.550、0.534、0.538。各個風力發電場年容量因子損失的最大值發生在10個風力發電場同時運作的情況,此時風力發電場1至10年容量因子損失分別為5.62%、7.4%、5.83%、17.31%、15.95%、16.09%、18.8%、15.85%、14.34%、8.31%,其中年容量因子損失最少的為風力發電場1,最高的為風力發電場7。zh_TW
dc.description.abstractThis study investigates the wake interaction among wind farms in the Zhangbin offshore area with the help of RANSE-based WIFA3D that solves continuity equation, momentum equations and k-ε turbulence model coupled with an actuator disk model. The yearly capacity factor of the Sihu wind farm is first predicted by WIFA3D that gives an error of 6.5% in comparison with the field measurement. The target of this study is ten offshore wind farms located in the Zhangbin offshore area. The DTU 10 MW wind turbine is presumed to be installed in those wind farms. The yearly capacity factor and capacity factor loss of the wind farms are predicted under WRF wind conditions. When the main wind direction is considered, a wind farm laterally neighboring one side of the target wind farm can result in a yearly capacity factor loss up to 1% and two wind farms laterally neighboring two opposite sides of the target wind farm can lead to a drop of yearly capacity factor up to 3%. Neighboring wind farms present in the upstream of the dominant wind direction are able to result in the decrease of yearly capacity factor of 10%. When a wind farm operates without the presence of other wind farms, the yearly capacity factor is predicted to be 0.487, 0.522, 0.523, 0.523, 0.524, 0.526, 0.524, 0.550, 0.534, and 0.538 for wind farm 1 to 10, respectively. When ten wind farms simultaneously operate, the yearly capacity factor loss reaches its maximum value of 5.62%, 7.4%, 5.83%, 17.31%, 15.95%, 16.09%, 18.8%, 15.85%, 14.34%, and 8.31% for wind farm 1 to 10, respectively. Among the studied wind farms, wind farm 1 is performing the best and wind farm 7 the worst when the yearly capacity factor loss is of interest.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:15:53Z (GMT). No. of bitstreams: 1
U0001-3009202209253000.pdf: 17270272 bytes, checksum: 8a3b0a212d07d2ec9594dc56543399ea (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsNomenclature v List of Figures ix List of Tables xii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 Chapter 2 Numerical Model 9 2.1 Governing Equations 9 2.2 Actuator Disk Model 13 2.2.1 Body Force Approach 13 2.2.2 Distribution of Body Force 15 2.3 Numerical Method 18 2.4 Computational Domain 21 2.5 Boundary Conditions 23 2.6 Mesh Distribution 25 2.7 Grid Dependency 27 2.8 Validation 29 2.8.1 SCADA Data Filtering 29 2.8.2 Capacity Factor 34 Chapter 3 Zhangbin Offshore Wind Farms 41 3.1 Wind Farm Design 41 3.2 Wind Turbine Array 43 Chapter 4 Power Prediction 47 4.1 Wind Condition 47 4.1.1 WRF results 47 4.1.2 Wind Condition 51 4.2 Power Prediction Method 53 Chapter 5 Wind Farm Power Prediction 55 5.1 Wind Farm Case 57 5.2 Wind Farm 1 62 5.3 Wind Farm 2 70 5.4 Wind Farm 3 74 5.5 Wind Farm 4 78 5.6 Wind Farm 5 84 5.7 Wind Farm 6 89 5.8 Wind Farm 7 95 5.9 Wind Farm 8 101 5.10 Wind Farm 9 105 5.11 Wind Farm 10 109 Chapter 6 Conclusions and Future Work 113 6.1 Conclusions 113 6.2 Future Work 115 References 116
dc.language.isoen
dc.subject年容量因子zh_TW
dc.subject致動盤模型zh_TW
dc.subject風力發電場干涉zh_TW
dc.subject年容量因子損失zh_TW
dc.subject雷諾平均納維斯托克斯方程式zh_TW
dc.subjectYearly capacity Factor Lossen
dc.subjectRANSEen
dc.subjectActuator Disk Modelen
dc.subjectYearly capacity Factoren
dc.subjectWind Farm Interactionen
dc.title以使用致動盤模型的RANS方法預測彰濱離岸風力發電場間跡流干涉現象zh_TW
dc.titleStudy on Wake Interaction among Wind Farms of Zhangbin Offshore Area via RANS Approach Coupled with Actuator Disk Modelen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾年勉(Nien-Mien Chung),盧南佑(Nan-You Lu),杜佳穎(Chia-Ying Tu),林宗岳(Tsung-Yue Lin),詹育禔(Yu-Ti Jhan)
dc.subject.keyword雷諾平均納維斯托克斯方程式,致動盤模型,年容量因子,風力發電場干涉,年容量因子損失,zh_TW
dc.subject.keywordRANSE,Actuator Disk Model,Yearly capacity Factor,Wind Farm Interaction,Yearly capacity Factor Loss,en
dc.relation.page122
dc.identifier.doi10.6342/NTU202204240
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2022-10-20-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-3009202209253000.pdf16.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved