Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85373
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭龍磻(Lung-Pan Cheng)
dc.contributor.authorCong-He Xuen
dc.contributor.author徐琮賀zh_TW
dc.date.accessioned2023-03-19T23:15:52Z-
dc.date.copyright2022-10-20
dc.date.issued2022
dc.date.submitted2022-09-29
dc.identifier.citationS. Ahmed, M. A. Bari, A. Ahmad, A. Mohammad, A. Khan, et al. Analysis of arm movement in badminton of forehand long and short service. Innovative Systems Design and Engineering, 2(3):13–17, 2011. A. Bangor, P. Kortum, and J. Miller. Determining what individual sus scores mean: Adding an adjective rating scale. J. Usability Studies, 4(3):114–123, may 2009. M. Blomqvist, P. Luhtanen, and L. Laakso 1. Comparison of two types of instruction in badminton. European journal of physical education, 6(2):139–155, 2001. J. Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind., 189, 11 1995. BWF. Global research–bwf development. BWF. Laws of badminton, May 2022. J. C. Chan, H. Leung, J. K. Tang, and T. Komura. A virtual reality dance training system using motion capture technology. IEEE transactions on learning technologies, 4(2):187–195, 2010. H.-T. Chen, Y.-Z. He, C.-L. Chou, S.-Y. Lee, B.-S. P. Lin, and J.-Y. Yu. Computer-assisted self-training system for sports exercise using kinects. In 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pages 1–4, 2013. A. Covaci, A.-H. Olivier, and F. Multon. Visual perspective and feedback guidance for vr free-throw training. IEEE computer graphics and applications, 35(5):55–65, 2015. I. de Kok, J. Hough, F. Hülsmann, M. Botsch, D. Schlangen, and S. Kopp. A multimodal system for real-time action instruction in motor skill learning. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pages 355–362, 2015. T. S. Ellenbecker and G. J. Davies. Closed kinetic chain exercise: a comprehensive guide to multiple joint exercise. Human Kinetics, 2001. D. R. Gould and G. C. Roberts. Modeling and motor skill acquisition. Quest, 33(2):214–230, 1981. P.-H. Han, Y.-S. Chen, Y. Zhong, H.-L. Wang, and Y.-P. Hung. My tai-chi coaches: an augmented-learning tool for practicing tai-chi chuan. In Proceedings of the 8th Augmented Human International Conference, pages 1–4, 2017. Z. D. He, R. M. Hu, and J. C. Xu. The development of badminton auxiliary training system based on kinect motion capture. In Advanced Materials Research, volume 926, pages 2735–2738. Trans Tech Publ, 2014. Y.-C. Huang, I.-N. Liao, C.-H. Chen, T.-U. İk, and W.-C. Peng. Tracknet: A deep learning network for tracking high-speed and tiny objects in sports applications. In 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pages 1–8. IEEE, 2019. I. Hussain, S. Ahmed, A. Mohammad, A. Khan, and M. A. Bari. Videographical analysis of short service in badminton. Journal of Education and Practice, 2(2):1–5, 2011. A. Ipsita, L. Erickson, Y. Dong, J. Huang, A. K. Bushinski, S. Saradhi, A. M. Villanueva, K. A. Peppler, T. S. Redick, and K. Ramani. Towards modeling of virtual reality welding simulators to promote accessible and scalable training. In CHI Conference on Human Factors in Computing Systems, pages 1–21, 2022. D.-S. Komaris, G. Tarfali, B. O'Flynn, and S. Tedesco. Unsupervised imu-based evaluation of at-home exercise programmes: a feasibility study. BMC Sports Science, Medicine and Rehabilitation, 14(1):1–12, 2022. K.-P. Kuo, C.-C. Liao, and C.-C. Kao. Improving special ability performance of badminton players through a visual reaction training system. Healthcare, 10(8), 2022. T. Lin, R. Singh, Y. Yang, C. Nobre, J. Beyer, M. A. Smith, and H. Pfister. Towards an understanding of situated ar visualization for basketball free-throw training. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–13, 2021. A. Maekawa, S. Takahashi, M. Y. Saraiji, S. Wakisaka, H. Iwata, and M. Inami. Naviarm: Augmenting the learning of motor skills using a backpack-type robotic arm system. In Proceedings of the 10th Augmented Human International Conference 2019, pages 1–8, 2019. H. C. Miles, S. R. Pop, S. J. Watt, G. P. Lawrence, and N. W. John. A review of virtual environments for training in ball sports. Computers & Graphics, 36(6):714–726, 2012. M. Phomsoupha and G. Laffaye. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports medicine, 45(4):473–495, 2015. A. Raina, T. Lakshmi, and S. Murthy. Combat: Wearable technology based training system for novice badminton players. In 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), pages 153–157. IEEE, 2017. J. Rasmussen and M. de Zee. A simulation of the effects of badminton serve release height. Applied Sciences, 11(7):2903, 2021. M. I. Rusydi, M. Sasaki, M. H. Sucipto, N. Windasari, et al. Study about backhand short serve in badminton based on the euler angle. In 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), pages 108–112. IEEE, 2015. A. Semeraro and L. Turmo Vidal. Visualizing instructions for physical training: Exploring visual cues to support movement learning from instructional videos. In CHI Conference on Human Factors in Computing Systems, pages 1–16, 2022. S. T. Seroyer, S. J. Nho, B. R. Bach, C. A. Bush-Joseph, G. P. Nicholson, and A. A. Romeo. The kinetic chain in overhand pitching: its potential role for performance enhancement and injury prevention. Sports health, 2(2):135–146, 2010. Y. Shen. Kinematics analysis on fore-and backhand serve of badminton. In Applied Mechanics and Materials, volume 540, pages 317–320. Trans Tech Publ, 2014. N.-J. Sung, J. W. Choi, C.-H. Kim, A. Lee, and M. Hong. Implementation of badminton motion analysis and training system based on iot sensors. Journal of Internet Computing and Services, 18(4):19–25, 2017. R. Tang, X.-D. Yang, S. Bateman, J. Jorge, and A. Tang. Physio@ home: Exploring visual guidance and feedback techniques for physiotherapy exercises. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 4123–4132, 2015. B. Thoravi Kumaravel, F. Anderson, G. Fitzmaurice, B. Hartmann, and T. Grossman. Loki: Facilitating remote instruction of physical tasks using bi-directional mixed-reality telepresence. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pages 161–174, 2019. S. Vial, J. Cochrane, A. J. Blazevich, and J. L. Croft. Using the trajectory of the shuttlecock as a measure of performance accuracy in the badminton short serve. International Journal of Sports Science & Coaching, 14(1):91–96, 2019. D. B. Waddell and B. A. Gowitzke. Biomechanical principles applied to badminton power strokes. In ISBS-Conference Proceedings Archive, 2000. J. C. Wilkie, J. Croft, M. S. Vial, A. Blazevich, and W. Australia. Analysis of the short serve in badminton and investigation into training to improve the short serve, aug 2020. E. Wu, M. Piekenbrock, T. Nakumura, and H. Koike. Spinpong-virtual reality table tennis skill acquisition using visual, haptic and temporal cues. IEEE Transactions on Visualization and Computer Graphics, 27(5):2566–2576, 2021. G. Wulf, C. Shea, and R. Lewthwaite. Motor skill learning and performance: a review of influential factors. Medical education, 44(1):75–84, 2010. B. Zhu, D. Kaber, M. Zahabi, and W. Ma. Effects of feedback type and modality on motor skill learning and retention. Behaviour & Information Technology, 39(4):431–442, 2020. L. Zou, T. Higuchi, H. Noma, L.-G. Roberto, and T. Isaka. Evaluation of a virtual reality-based baseball batting training system using instantaneous bat swing information. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 1289–1290. IEEE, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85373-
dc.description.abstract我們提出一套羽毛球反手發短球的訓練系統。與之前專注於使用者姿勢的運動技能訓練系統不同,本系統透過開放式動力鏈,分析動作中關節的變化情形,這有助於使用者調整動作,並最大限度地減少肌肉使用,同時更好地控制關節。從分析 6 位選手發球動作的形成性研究中,我們得到一個理想的發球動作模型,對應至 4 個與動作過程相關的開放式動力鏈特性,並以視覺呈現系統使用者的發球動作與理想動作之間的差異。為了驗證本系統,我們進行針對 12 位不同程度受試者的研究,研究中衡量了發球準確性及動作的變化,並收集受試者對於系統可用性及視覺設計的質性回饋。此外,我們也開源骨架分析模型以供將來使用。雖然受試者整體的發球準確性未有顯著的提升,但研究結果顯示,本系統可在短期內幫助受試者微調發球動作,使其更接近我們理想的 4 種開放式動力鏈特性。zh_TW
dc.description.abstractWe present a badminton training system that focuses on the backhand short service. Unlike the prior motor skill training systems which focus on trainee's posture, our system analyzes the process of moving joints with open kinetic chain (OKC), that help align movement and minimize muscle use for better joint control. We process the users’ motion capture data to visually show their last service process comparing to 4 ideal OKC characteristics that we collected from a 6-experts formative study as well as recommended contact posture. We validate our system through a 12-user study that measures serving accuracy, qualitative feedback, and skeletal data with users at various skill levels and open source our skeletal analysis model for future use. While the participants' overall service accuracy was not significantly improved, our results show that our system helps participants in short term to fine tune their service motion that closer to our ideal 4 OKC characteristics.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:15:52Z (GMT). No. of bitstreams: 1
U0001-2309202200332400.pdf: 10099685 bytes, checksum: e4963765032361df5cd142f05b7eb671 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgements ii 摘要 iii Abstract iv Contents v List of Figures vii List of Tables xi Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Research on Badminton 4 2.2 Motor Skill Acquisition and Teaching 5 2.3 Feedback and Guidance 6 Chapter 3 A Good Backhand Short Service 8 3.1 Formative Study 9 3.1.1 Participants 9 3.1.2 Apparatus, Procedure, and Task 10 3.1.3 Data Analysis and Result 12 Chapter 4 System 14 4.1 Motion Analysis 14 4.2 Guidance and Feedbacks 15 Chapter 5 Evaluation 19 5.1 Participants 19 5.2 Apparatus, Procedure, and Task 19 5.3 Result 21 Chapter 6 Discussion 27 6.1 Study Result 27 6.2 Badminton Backhand Short Service 29 Chapter 7 Limitation and Future Work 31 Chapter 8 Conclusion 33 References 34 Appendix A — Kinetic variables 40 Appendix B — Time Variation of Kinetic Variables 42 Appendix C — Racket speed in translation and rotation 49
dc.language.isoen
dc.subject開放式動力鏈zh_TW
dc.subject訓練zh_TW
dc.subject羽球反手發短球zh_TW
dc.subjectbadminton backhand short serviceen
dc.subjectopen kinetic chainen
dc.subjecttrainingen
dc.title以開放式動力鏈分析並輔助羽球發球動作訓練zh_TW
dc.titleBetterMinton Service: Analyzing the Badminton Service using Open Kinetic Chainen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳彥仰(Mike Y. Chen),胡敏君(Min-Chun Hu)
dc.subject.keyword羽球反手發短球,訓練,開放式動力鏈,zh_TW
dc.subject.keywordbadminton backhand short service,training,open kinetic chain,en
dc.relation.page50
dc.identifier.doi10.6342/NTU202203868
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
dc.date.embargo-lift2022-10-20-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
U0001-2309202200332400.pdf9.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved