請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85371完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭永銘(Yung-Ming Jeng) | |
| dc.contributor.author | Jun-Ru Lin | en |
| dc.contributor.author | 林君儒 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:00:54Z | - |
| dc.date.copyright | 2022-10-03 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-20 | |
| dc.identifier.citation | 1. Joshi, S.S. and B.D.J.C.a.c.j.f.c. Badgwell, Current treatment and recent progress in gastric cancer. 2021. 71(3): p. 264-279. 2. Kang, X., et al., LIMK1 promotes peritoneal metastasis of gastric cancer and is a therapeutic target. 2021. 40(19): p. 3422-3433. 3. Du, S., et al., Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through C/EBPβ-mediated PDGFB autocrine and paracrine signaling. 2021. 40(38): p. 5764-5779. 4. Sun, T., et al., Anoikis resistant mediated by FASN promoted growth and metastasis of osteosarcoma. 2019. 10(4): p. 1-13. 5. Adeshakin, F.O., et al., Mechanisms for modulating Anoikis resistance in cancer and the relevance of metabolic reprogramming. 2021. 11: p. 626577. 6. Sugarbaker, P.H.J.J.o.C.M. and Treatment, Gastric cancer: prevention and treatment of peritoneal metastases. 2018. 4: p. 7. 7. Rijken, A., et al., The burden of peritoneal metastases from gastric cancer: a systematic review on the incidence, risk factors and survival. 2021. 10(21): p. 4882. 8. Roukos, D.H., et al., Gastric cancer: introduction, pathology, epidemiology. 2002. 1(1): p. 1-3. 9. Hamashima, C.J.W.J.o.G.W., Current issues and future perspectives of gastric cancer screening. 2014. 20(38): p. 13767. 10. Tanaka, N., et al., Trends in characteristics of surgically treated early gastric cancer patients after the introduction of gastric cancer treatment guidelines in Japan. 2010. 13(2): p. 74-77. 11. Yarema, R., et al., Gastric cancer with peritoneal metastases: efficiency of standard treatment methods. 2020. 12(5): p. 569. 12. Liu, X.-N., et al., ESC reverses epithelial mesenchymal transition induced by transforming growth factor-β via inhibition of Smad signal pathway in HepG2 liver cancer cells. 2015. 15(1): p. 1-10. 13. Elias, D. and H.J.J.P.r. Ditzel, Fyn is an important molecule in cancer pathogenesis and drug resistance. 2015. 100: p. 250-254. 14. Huang, D., et al., GLI2 promotes cell proliferation and migration through transcriptional activation of ARHGEF16 in human glioma cells. 2018. 37(1): p. 1-17. 15. Resh, M.D.J.T.i.j.o.b. and c. biology, Fyn, a Src family tyrosine kinase. 1998. 30(11): p. 1159-1162. 16. Chen, Z.-Y., et al., Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. 2011. 32(10): p. 1419-1426. 17. Yu, B., et al., FYN is required for ARHGEF16 to promote proliferation and migration in colon cancer cells. 2020. 11(8): p. 1-14. 18. Taddei, M., et al., Anoikis: an emerging hallmark in health and diseases. 2012. 226(2): p. 380-393. 19. Zhang, X., et al., Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. 2022. 10: p. 15-31. 20. Chiarugi, P. and E.J.B.p. Giannoni, Anoikis: a necessary death program for anchorage-dependent cells. 2008. 76(11): p. 1352-1364. 21. Farabaugh, S.M., D.N. Boone, and A.V.J.F.i.e. Lee, Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. 2015. 6: p. 59. 22. Simpson, C.D., K. Anyiwe, and A.D.J.C.l. Schimmer, Anoikis resistance and tumor metastasis. 2008. 272(2): p. 177-185. 23. Reddig, P.J., R.L.J.C. Juliano, and M. Reviews, Clinging to life: cell to matrix adhesion and cell survival. 2005. 24(3): p. 425-439. 24. Zhong, X. and F.J.J.C.s. Rescorla, Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. 2012. 24(2): p. 393-401. 25. Schmierer, B. and C.S.J.N.r.M.c.b. Hill, TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. 2007. 8(12): p. 970-982. 26. Shi, Y. and J.J.c. Massagué, Mechanisms of TGF-β signaling from cell membrane to the nucleus. 2003. 113(6): p. 685-700. 27. Kowanetz, M., et al., Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein. 2004. 24(10): p. 4241-4254. 28. Wu, M., G. Chen, and Y.-P.J.B.r. Li, TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. 2016. 4(1): p. 1-21. 29. Inman, G.J.J.C.o.i.g. and development, Switching TGFβ from a tumor suppressor to a tumor promoter. 2011. 21(1): p. 93-99. 30. Derynck, R., R.J. Akhurst, and A.J.N.g. Balmain, TGF-β signaling in tumor suppression and cancer progression. 2001. 29(2): p. 117-129. 31. Ellenrieder, V., et al., TGF‐β–induced invasiveness of pancreatic cancer cells is mediated by matrix metalloproteinase‐2 and the urokinase plasminogen activator system. 2001. 93(2): p. 204-211. 32. Leivonen, S.K. and V.M.J.I.j.o.c. Kähäri, Transforming growth factor‐β signaling in cancer invasion and metastasis. 2007. 121(10): p. 2119-2124. 33. De Wever, O., M.J.T.J.o.P.A.J.o.t.P.S.o.G.B. Mareel, and Ireland, Role of tissue stroma in cancer cell invasion. 2003. 200(4): p. 429-447. 34. Safina, A., E. Vandette, and A.J.O. Bakin, ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. 2007. 26(17): p. 2407-2422. 35. Drabsch, Y., P.J.J.o.m.g.b. Ten Dijke, and neoplasia, TGF-β signaling in breast cancer cell invasion and bone metastasis. 2011. 16(2): p. 97-108. 36. Moustakas, A., et al., Mechanisms of TGF-β signaling in regulation of cell growth and differentiation. 2002. 82(1-2): p. 85-91. 37. Zhao, H.-w., et al., TGF-β/Smad2/3 signal pathway involves in U251 cell proliferation and apoptosis. 2015. 562(1): p. 76-82. 38. Ikushima, H., K.J.C. Miyazono, and t. research, TGF-β signal transduction spreading to a wider field: a broad variety of mechanisms for context-dependent effects of TGF-β. 2012. 347(1): p. 37-49. 39. Karlsson, M.C., et al., Epithelial‐mesenchymal transition in cancer metastasis through the lymphatic system. 2017. 11(7): p. 781-791. 40. Syed, V.J.J.o.c.b., TGF‐β Signaling in Cancer. 2016. 117(6): p. 1279-1287. 41. Gatza, C.E., S.Y. Oh, and G.C.J.C.s. Blobe, Roles for the type III TGF-β receptor in human cancer. 2010. 22(8): p. 1163-1174. 42. Miyazawa, K., et al., Two major Smad pathways in TGF‐β superfamily signalling. 2002. 7(12): p. 1191-1204. 43. Goggins, M., et al., Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. 1998. 58(23): p. 5329-5332. 44. Walton, K.L., K.E. Johnson, and C.A.J.F.i.p. Harrison, Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. 2017. 8: p. 461. 45. Bertolino, P., et al., Transforming growth factor-β signal transduction in angiogenesis and vascular disorders. 2005. 128(6): p. 585S-590S. 46. Cutroneo, K.R.J.W.R. and Regeneration, TGF‐β–induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. 2007. 15: p. S54-S60. 47. Gordon, K.J. and G.C.J.B.e.B.A.-M.B.o.D. Blobe, Role of transforming growth factor-β superfamily signaling pathways in human disease. 2008. 1782(4): p. 197-228. 48. Pasche, B.J.J.o.c.p., Role of transforming growth factor beta in cancer. 2001. 186(2): p. 153-168. 49. Park, K., et al., Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. 1994. 91(19): p. 8772-8776. 50. Zhang, H., et al., KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells. 2013. 139(6): p. 1033-1042. 51. Derynck, R. and Y.E.J.N. Zhang, Smad-dependent and Smad-independent pathways in TGF-β family signalling. 2003. 425(6958): p. 577-584. 52. Zhao, M., L. Mishra, and C.-X.J.I.j.o.b.s. Deng, The role of TGF-β/SMAD4 signaling in cancer. 2018. 14(2): p. 111. 53. Koveitypour, Z., et al., Signaling pathways involved in colorectal cancer progression. 2019. 9(1): p. 1-14. 54. Zhao, M., L. Mishra, and C.-X. Deng, The role of TGF-β/SMAD4 signaling in cancer. International journal of biological sciences, 2018. 14(2): p. 111-123. 55. Yingling, J.M., K.L. Blanchard, and J.S. Sawyer, Development of TGF-β signalling inhibitors for cancer therapy. Nature Reviews Drug Discovery, 2004. 3(12): p. 1011-1022. 56. Jiang, W.G., et al., Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Seminars in Cancer Biology, 2015. 35: p. S244-S275. 57. Browne, J.A., et al., TGF-β activates ERK5 in human renal epithelial cells. Biochemical and Biophysical Research Communications, 2008. 373(3): p. 440-444. 58. Huang, C.-Y., et al., Recent progress in TGF-β inhibitors for cancer therapy. Biomedicine & Pharmacotherapy, 2021. 134: p. 111046. 59. Wang, H., et al., Development of small molecule inhibitors targeting TGF-β ligand and receptor: Structures, mechanism, preclinical studies and clinical usage. European Journal of Medicinal Chemistry, 2020. 191: p. 112154. 60. Holmgaard, R.B., et al., Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. Journal for ImmunoTherapy of Cancer, 2018. 6(1): p. 47. 61. Yingling, J.M., et al., Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget, 2017. 9(6): p. 6659-6677. 62. Herbertz, S., et al., Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug design, development and therapy, 2015. 9: p. 4479-4499. 63. Fujiwara, Y., et al., Phase 1 study of galunisertib, a TGF-beta receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2015. 76(6): p. 1143-1152. 64. Melisi, D., et al., LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Molecular Cancer Therapeutics, 2008. 7(4): p. 829-840. 65. Irby, R.B. and T.J. Yeatman, Role of Src expression and activation in human cancer. Oncogene, 2000. 19(49): p. 5636-5642. 66. Summy, J.M. and G.E. Gallick, Src family kinases in tumor progression and metastasis. Cancer and Metastasis Reviews, 2003. 22(4): p. 337-358. 67. Mitra, S.K. and D.D. Schlaepfer, Integrin-regulated FAK–Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 2006. 18(5): p. 516-523. 68. Trevino, J.G., et al., Inhibition of Src Expression and Activity Inhibits Tumor Progression and Metastasis of Human Pancreatic Adenocarcinoma Cells in an Orthotopic Nude Mouse Model. The American Journal of Pathology, 2006. 168(3): p. 962-972. 69. Chavez-Dominguez, R., et al., The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. 2020. 10. 70. Wei, L., et al., Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis. Oncogene, 2004. 23(56): p. 9052-61. 71. Paoli, P., E. Giannoni, and P. Chiarugi, Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013. 1833(12): p. 3481-3498. 72. Patel, A., et al., Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sciences, 2016. 157: p. 52-61. 73. Bolós, V., et al., The dual kinase complex FAK-Src as a promising therapeutic target in cancer. OncoTargets and therapy, 2010. 3: p. 83-97. 74. Wei, L., et al., Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis. Oncogene, 2004. 23(56): p. 9052-9061. 75. Eguchi, R., et al., Inhibition of Src family kinases overcomes anoikis resistance induced by spheroid formation and facilitates cisplatin-induced apoptosis in human mesothelioma cells. Oncol Rep, 2015. 34(5): p. 2305-2310. 76. Schlessinger, J., New Roles for Src Kinases in Control of Cell Survival and Angiogenesis. Cell, 2000. 100(3): p. 293-296. 77. Turner, N., et al., FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res, 2010. 70(5): p. 2085-94. 78. Yu, J., et al., FYN promotes gastric cancer metastasis by activating STAT3-mediated epithelial-mesenchymal transition. Translational oncology, 2020. 13(11): p. 100841-100841. 79. Nakagawa, M., et al., Clinical Significance of IGF1R Expression in Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2012. 13(2): p. 136-142. 80. Farabaugh, S.M., D.N. Boone, and A.V. Lee, Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. 2015. 6. 81. Playford, M.P., et al., Focal adhesion kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho. Experimental cell research, 2008. 314(17): p. 3187-3197. 82. Kim, Y.-N., et al., Anoikis resistance: an essential prerequisite for tumor metastasis. International journal of cell biology, 2012. 2012: p. 306879-306879. 83. Fofaria, N.M. and S.K. Srivastava, STAT3 induces anoikis resistance, promotes cell invasion and metastatic potential in pancreatic cancer cells. Carcinogenesis, 2015. 36(1): p. 142-150. 84. Du, S., et al., NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. Cell Death & Disease, 2018. 9(10): p. 948. 85. Li, T., et al., The interactome and spatial redistribution feature of Ca(2+) receptor protein calmodulin reveals a novel role in invadopodia-mediated invasion. Cell Death Dis, 2018. 9(3): p. 292. 86. Paz, H., N. Pathak, and J. Yang, Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene, 2014. 33(33): p. 4193-4202. 87. Parashar, D., et al., Peritoneal Spread of Ovarian Cancer Harbors Therapeutic Vulnerabilities Regulated by FOXM1 and EGFR/ERBB2 Signaling. Cancer Res, 2020. 80(24): p. 5554-5568. 88. Gloushankova, N.A., S.N. Rubtsova, and I.Y. Zhitnyak, Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue barriers, 2017. 5(3): p. e1356900-e1356900. 89. Singh, P., C. Carraher, and J.E. Schwarzbauer, Assembly of fibronectin extracellular matrix. Annual review of cell and developmental biology, 2010. 26: p. 397-419. 90. Han, H.J., et al., Fibronectin regulates anoikis resistance via cell aggregate formation. Cancer Lett, 2021. 508: p. 59-72. 91. Mitra, S.K. and D.D. Schlaepfer, Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol, 2006. 18(5): p. 516-23. 92. Ramesh, S., G.M. Wildey, and P.H. Howe, Transforming growth factor beta (TGFbeta)-induced apoptosis: the rise & fall of Bim. Cell cycle (Georgetown, Tex.), 2009. 8(1): p. 11-17. 93. Ohgushi, M., et al., Transforming growth factor beta-dependent sequential activation of Smad, Bim, and caspase-9 mediates physiological apoptosis in gastric epithelial cells. Molecular and cellular biology, 2005. 25(22): p. 10017-10028. 94. Kim, S.G., et al., Transforming growth factor-beta 1 induces apoptosis through Fas ligand-independent activation of the Fas death pathway in human gastric SNU-620 carcinoma cells. Mol Biol Cell, 2004. 15(2): p. 420-34. 95. Lim, G.-E., et al., Pygenic Acid A (PA) Sensitizes Metastatic Breast Cancer Cells to Anoikis and Inhibits Metastasis In Vivo. International journal of molecular sciences, 2020. 21(22): p. 8444. 96. Chen, K.Y., et al., Monascin accelerates anoikis in circulating tumor cells and prevents breast cancer metastasis. Oncol Lett, 2020. 20(5): p. 166. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85371 | - |
| dc.description.abstract | 胃癌是第六種最普及的癌症,由於胃癌常常伴隨著快速發展的腹腔轉移,此現象被視為導致癌症死亡的其中一個最普遍的原因,腹腔轉移在胃癌末期的病人中是相當普見的,大概百分之八十到九十的胃癌末期病患都伴隨著腫瘤轉移與不好的預後。然而,腹腔轉移的機制還未被清楚釐清。 失巢凋亡(Anoikis)是一種細胞脫離細胞外基質而導致的一種細胞凋亡,不過惡性腫瘤有能力逃脫失巢凋亡,進而促進他們侵犯與轉移的能力,這樣的現象叫做”抵抗失巢凋亡”,因此,我們推測抵抗失巢凋亡可能與腹腔轉移有關。 本篇中,我們首先利用不同細胞株包括肺癌細胞LU65與LU99, 胰臟癌細胞MIA-PaCa2與BxPC3, 乳癌細胞4T1, MCF7與T47D, 以及 胃癌細胞AGS與NCI-N87來建立具有抵抗失巢凋亡能力的細胞,我們發現胃癌細胞NCI-N87在24天後有抵抗失巢凋亡的能力。我們分析該細胞株(在本篇用NCI-N87-AR表示) 並發現其侵犯與增生能力更好。透過RNA定序結果發現,NCI-N87-AR 與其懸浮態NCI-N87-AR(s) 和不飽和脂肪酸的生化合成、脂肪酸代謝、glycine, serine與threonine代謝、黏著型連接、cysteine與methionine代謝、 胺基酸的生化合成、調控幹細胞全能性的訊號途徑、局部黏著、Wnt 訊號途徑、癌症的蛋白聚醣與可能的乙型轉化生長因子途徑有關。我們決定選擇黏著型連接途徑做後續的研究。和黏著型連接相關的7個基因在即時聚合酶連鎖反應實驗中被測出在AR與AR(s) 當中有高度的表現,其中一個基因是Smad4, 它是TGF-β其中一個下游基因。我們因此認為TGF-β可能是導致抵抗失巢凋亡能力的重要因素之一。因此,我們在細胞中加入TGF-β與 TGF-β抑制劑,結果顯示TGF-β抑制劑Galunisertib以及LY2109761會抑制AR(s),促進其細胞凋亡。再者,我們還發現了Src, Bim與Smad2/3在NCI-N87-AR與NCI-N87-AR(s) 中表現量較高,不過其機制與原因還不明確。 綜觀上述,我們的結果顯示抵抗失巢凋亡在胃癌中可能促進腫瘤侵犯與增生,且其可能被TGF-β所誘導,因此抑制TGF-β可能導致AR(s)的細胞凋亡。Src也在具抵抗失巢凋亡能力的細胞株與其懸浮態有較高的表現。 | zh_TW |
| dc.description.abstract | Gastric cancer is the sixth most common cancer and it represents one of the most common causes of cancer death worldwide because of its tendency of rapid peritoneal metastasis, which is a common form of metastasis among advanced gastric cancer patients. About 80-90% of gastric cancer patients are diagnosed at advanced stage with metastasis and poor prognosis. However, the mechanism of peritoneal metastasis is poorly understood. Anoikis is a form of cell death induced by detachment of cells from the extracellular matrix (ECM). Yet, malignant tumor cells are able to develop specific mechanism to escape from anoikis to promote their invasion ability and metastasis, which is called “anoikis resistance”. Thus, we suggested that anoikis resistance might be involved in peritoneal metastasis. In this study, we first built up anoikis-resistant cell lines with different cell lines including lung cancer cell lines LU65 and LU99, pancreatic cell lines MIA-PaCa2 and BxPC3, breast cancer cell lines 4T1, MCF7 and T47D, and gastric cancer cell line AGS and NCI-N87. We found that gastric cancer cell line NCI-N87 had the tendency of anoikis resistance (AR) after 24 days. We analyzed the AR subclone and found that it has much better invasion and proliferation ability. Through RNA sequencing data, NCI-N87-AR and its suspension type NCI-N87-AR(s) had alteration in biosynthesis of unsaturated fatty acids, fatty acid metabolism, glycine, serine and threonine metabolism, adherens junction, cysteine and methionine metabolism, biosynthesis of amino acids, signaling pathways regulating pluripotency of stem cells, focal adhesion, Wnt signaling pathway, proteoglycans in cancer and TGF-β signaling pathway. We decided to choose adherens junction pathway for further study. 7 genes related to adherens junction pathway were highly expressed in AR and AR(s) cell lines, confirmed by qPCR. One of the genes was Smad4, which is a downstream gene of TGF-β. We thought that TGF-β might be an important factor of anoikis resistance. Therefore, recombinant human TGF-β and TGF-β inhibitor were added. Galunisertib and LY2109761 were shown to have inhibition effect on AR(s) cell line. In addition, we found that Src, Bim and Smad2/3 were upregulated in NCI-N87-AR and NCI-N87-AR(s) cell lines but the mechanism and the reason are still unclear. In conclusion, our results indicated that anoikis resistance could promote invasion and proliferation in gastric cancer. Anoikis resistance might be triggered by TGF-β and thus TGF-β inhibitor might lead to apoptosis in AR(s) cell line. Src was also shown to have higher expression in anoikis-resistant cell line in both adhesion and suspension states. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:00:54Z (GMT). No. of bitstreams: 1 U0001-1907202215314700.pdf: 4934997 bytes, checksum: 27f3677e434f1aaae7ef5b813932fa39 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………………………..Ⅰ 謝辭…………………………………………………………………………………….II 中文摘要……………………………………………………………………………….IV Abstract………………………………………………………………………………....V Contents……………………………………………………………………………….VII 1. Introduction __________1 1.1 Gastric cancer………………………………………………………. …………....1 1.2 Anoikis…………………………………………………………………………….1 1.3 Anoikis resistance…………………………………………………………………2 1.4 Transforming growth factor-β (TGF-β) …………………………………………..3 1.5 Ligands and receptors of TGF-β…………………………………………………..4 1.6 TGF-β and Smad proteins…………………………………………………………4 1.7 TGF-β inhibitor (Galunisertib and LY2109761) ………………………………….4 1.8 Src and anoikis……………………………………………………………………..5 1.9 Aim of the study…………………………………………………………….……..7 2. Materials and Methods _________ _ 8 2.1 Materials……………………………………………………………………….…..8 2.2 Cell culture………………………………………………………………………...8 2.3 Suspension Culture………………………………………………………………..9 2.4 Cultivation of anoikis-resistant cells……………………………………….……...9 2.5 Apoptosis/ Anoikis assay (Flow cytometry)………………………………….…...9 2.6 RNA isolation…………………………………………………………………….10 2.7 Reverse Transcription (RT) ………………………………………. …………….10 2.8 Quantitative Real-Time-PCR………………………………………………….…10 2.9 Soft agar assay…………………………………………………………………....11 2.10 Three dimensional basement membrane culture assay…………………………11 2.11 In vitro Boyden chamber invasion assay……………………………………….11 2.12 MTT assay………………………………………………………………………12 2.13 Colony formation assay……………………………………………………...…12 2.14 Western Blot…………………………………………………………………….13 2.15 TGF-β and inhibitor treatment………………………………………………….14 2.16 Statistical Analysis……………………………………………………………...14 3. Results __________15 3.1 NCI-N87 cells were found to have the ability of developing anoikis-resistant cell subline. ……………………………………………………………………………...….15 3.2 Cell invasion, proliferation and sphere formation ability were promoted in NCI-N87-AR cells. ……………………………………………………………...…………..15 3.3 Adheren junction pathway was found to be related to anoikis resistance. ……………………………………………………………………………...16 3.4. Adheren junction related genes were upregulated in NCI-N87-AR(s) cells. ……………………………………………………………………...…………….16 3.5. Recombinant Human TGF-β could not strengthen the anoikis resistance ability…………………………………………………………………………………..17 3.6 FGFR1 inhibitor AZD4547 could not inhibit the anoikis resistance ability……………………………………………………………………..…………….17 3.7 Src/FYN inhibitors could not inhibit the anoikis resistance ability...…………….18 3.8 IGF1R inhibitor could not inhibit the anoikis resistance ability…………………19 3.9 Two TGF-β inhibitors had gradual inhibition effect on NCI-N87-AR(s) cells while TGF-β has no effect on NCI-N87, NCI-N87-AR and NCI-N87-AR(s) cells. ……………………………………………………………………………………19 3.10 pSmad2/3 and total Smad2/3 were both upregulated in NAR and NAR(s) ………………………………………………………………………………...20 3.11 Src was also highly expressed in NAR and NAR(s) cell lines…………………20 3.12 Src/FAK might not be the pathway of anoikis resistance in Gastric cancer…………………………………………………………………………………..20 4. Discussion ___________ 21 4.1 The generation of anoikis resistant cell line……………………………………...21 4.2 Adherens junction was found via RNA sequencing……………………………...22 4.3 The result of Src activation and inhibition was contradictory……………………23 4.4 TGF-β was induced in NCI-N87-AR(s) but TGF-β induction had no effect ………………………………………………………………………….………..24 5. Figures and Tables ___________26 Figure 1. The generation of anoikis-resistant cells with different cell lines. …………………………………………………………………………..……….26 Figure 2. The morphology change, invasion ability, cell proliferation and sphere formation ability were tested in NCI-N87, MCF-7 cells and their anoikis-resistant cells…………………………………………………………………………………….29 Figure 3. RNA sequencing result was shown and 7 upregulated genes were confirmed. ………………………………………………………………………….….35 Figure 4. TGFβ was added in NCI-N87, NCI-N87(s), NCI-N87-AR and NCI-N87-AR(s) cells. ……………………………………………………………………………37 Figure 5. Different inhibitors were added in NCI-N87, NCI-N87(s), NCI-N87-AR and NCI-N87-AR(s) cells. ………………………………………………………………...39 Figure 6. Western Blot result showed the expression of different genes……………..50 Figure 7. The graphic abstract of our study…………………………………………...51 Table 1. Antibodies used for Western Blot…………………………….......................53 Table 2. Inhibitors used in this study………………………………………………….53 Table 3. The primer used for qPCR……………………………………………………54 6. Reference _________ _55 | |
| dc.language.iso | en | |
| dc.subject | 抵抗失巢凋亡 | zh_TW |
| dc.subject | 胃癌 | zh_TW |
| dc.subject | Src | zh_TW |
| dc.subject | TGF-β | zh_TW |
| dc.subject | 失巢凋亡 | zh_TW |
| dc.subject | Src | en |
| dc.subject | gastric cancer | en |
| dc.subject | anoikis | en |
| dc.subject | anoikis resistance | en |
| dc.subject | TGF-β | en |
| dc.title | 抗失巢凋亡在胃癌中的表觀改變與其潛在機制 | zh_TW |
| dc.title | Phenotypic Alteration of Anoikis-Resistant Gastric Cancer and its Underlying Mechanisms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳偉武(Wei-Wu Chen),李仁傑 (Jen-chieh Lee),廖肇裕 (Jau-Yu Liau) | |
| dc.subject.keyword | 胃癌,失巢凋亡,抵抗失巢凋亡,TGF-β,Src, | zh_TW |
| dc.subject.keyword | gastric cancer,anoikis,anoikis resistance,TGF-β,Src, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202201547 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-03 | - |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1907202215314700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
