Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭朱杏(Chuhsing Kate Hsiao)
dc.contributor.authorYa-Ting Liangen
dc.contributor.author梁雅婷zh_TW
dc.date.accessioned2023-03-19T23:00:06Z-
dc.date.copyright2022-08-04
dc.date.issued2022
dc.date.submitted2022-07-21
dc.identifier.citationLiu, F., Wanigatunga, A. A., & Schrack, J. A. (2021). Assessment of physical activity in adults using wrist accelerometers. Epidemiologic Reviews, 43(1), 65-93. Bai, J., He, B., Shou, H. et al. (2014). Normalization and extraction of interpretable metrics from raw accelerometry data. Biostatistics, 15(1), 102-116. Kelly, L. A., McMillan, D. G., Anderson, A. et al. (2013). Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Medical Physics, 13(1), 1-7. Montoye, A. H., Conger, S. A., Connolly, C. P. et al. (2017). Validation of accelerometer-based energy expenditure prediction models in structured and simulated free-living settings. Measurement in Physical Education and Exercise Science, 21(4), 223-234. Godinho, C., Domingos, J., Cunha, G. et al. (2016). A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. Journal of Neuroengineering and Rehabilitation, 13(1), 1-10. Auepanwiriyakul, C., Waibel, S., Songa, J. et al. (2020). Accuracy and acceptability of wearable motion tracking for inpatient monitoring using smartwatches. Sensors, 20(24), 7313. Rowlands, A. V., Mirkes, E. M., Yates, T. E. et al. (2018). Accelerometer-assessed physical activity in epidemiology. Medicine & Science in Sports & Exercise, 50(2), 257-265. Van Hees, V. T., Fang, Z., Langford, J. et al. (2014). Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. Journal of Applied Physiology, 117(7), 738-744. Van Hees, V. T., Gorzelniak, L., Dean León, E. C. et al. (2013). Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PloS One, 8(4), e61691. Migueles, J. H., Rowlands, A. V., Huber, F. et al. (2019). GGIR: a research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. Journal for the Measurement of Physical Behaviour, 2(3), 188-196. Plekhanova, T., Rowlands, A. V., Yates, T. et al. (2020). Equivalency of sleep estimates: Comparison of three research-grade accelerometers. Journal for the Measurement of Physical Behaviour, 3(4), 294-303. Crouter, S. E., Churilla, J. R., & Bassett, D. R. (2006). Estimating energy expenditure using accelerometers. European journal of Applied Physiology, 98(6), 601-612. Hurter, L., Fairclough, S. J., Knowles, Z. R. et al. (2018). Establishing raw acceleration thresholds to classify sedentary and stationary behaviour in children. Children, 5(12), 172. Sundararajan, K., Georgievska, S., Te Lindert, B. H. et al. (2021). Sleep classification from wrist-worn accelerometer data using random forests. Scientific Reports, 11(1), 1-10. Bai, J., Di, C., Xiao, L. et al. (2016). An activity index for raw accelerometry data and its comparison with other activity metrics. PloS One, 11(8), e0160644. van Loo, C. M., Okely, A. D., Batterham, M. J. et al. (2018). Wrist acceleration cut-points for moderate-to-vigorous physical activity in youth. Medicine and Science in Sports and Exercise, 50(3), 609. Phillips, L. R., Parfitt, G., & Rowlands, A. V. (2013). Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. Journal of Science and Medicine in Sport, 16(2), 124-128. Howe, C. A., Staudenmayer, J. W., & Freedson, P. S. (2009). Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc, 41(12), 2199-2206. Lee, S. M., Yoon, S. M., & Cho, H. (2017, February). Human activity recognition from accelerometer data using Convolutional Neural Network. 2017 IEEE International Conference on Big Data and Smart Computing (bigcomp) (pp. 131-134). IEEE. Mathie, M. J., Celler, B. G., Lovell, N. H. et al. (2004). Classification of basic daily movements using a triaxial accelerometer. Medical and Biological Engineering and Computing, 42(5), 679-687. Mathie, M. J., Coster, A. C., Lovell, N. H. et al. (2004). A pilot study of long-term monitoring of human movements in the home using accelerometry. Journal of Telemedicine and Telecare, 10(3), 144-151. Abraham, B., Duong, D., George, M. et al. (2017, April). Using patient-generated health data to facilitate preoperative decision making for breast cancer patients. 2017 Systems and Information Engineering Design Symposium (SIEDS) (pp. 271-276). IEEE. Bekteshi, S., Nica, I. G., Gakopoulos, S. et al. (2021). Exercise load and physical activity intensity in relation to dystonia and choreoathetosis during powered wheelchair mobility in children and youth with dyskinetic cerebral palsy. Disability and Rehabilitation, 1-12. Van Hees, V. T., Sabia, S., Anderson, K. N. et al. (2015). A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PloS One, 10(11), e0142533. van Hees, V. T., Sabia, S., Jones, S. E. et al. (2018). Estimating sleep parameters using an accelerometer without sleep diary. Scientific Reports, 8(1), 1-11. Jones, S. E., Lane, J. M., Wood, A. R. et al. (2019). Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nature Communications, 10(1), 1-11. Vähä‐Ypyä, H., Vasankari, T., Husu, P. et al. (2015). A universal, accurate intensity‐based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 64-70. Wilson, G., Bryan, J., Cranston, K. et al. (2017). Good enough practices in scientific computing. PLoS Computational Biology, 13(6), e1005510. Ramakrishnan, R., Doherty, A., Smith-Byrne, K. et al. (2021). Accelerometer measured physical activity and the incidence of cardiovascular disease: Evidence from the UK Biobank cohort study. PLoS Medicine, 18(1), e1003487. Barker, J., Smith Byrne, K., Doherty, A. et al. (2019). Physical activity of UK adults with chronic disease: cross-sectional analysis of accelerometer-measured physical activity in 96 706 UK Biobank participants. International Journal of Epidemiology, 48(4), 1167-1174. Mitchell, K. T., Larson, P., Starr, P. A. et al. (2019). Benefits and risks of unilateral and bilateral ventral intermediate nucleus deep brain stimulation for axial essential tremor symptoms. Parkinsonism & Related Disorders, 60, 126-132. Tanaka, T., Kokubo, K., Iwasa, K. et al. (2018). Intraday activity levels may better reflect the differences between major depressive disorder and bipolar disorder than average daily activity levels. Frontiers in Psychology, 2314. American Psychiatric Association, D. S., & American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5, 5. Washington, DC: American psychiatric association. Cella, M., Okruszek, Ł., Lawrence, M. et al. (2018). Using wearable technology to detect the autonomic signature of illness severity in schizophrenia. Schizophrenia Research, 195, 537-542. Umbricht, D., Cheng, W. Y., Lipsmeier, F. et al. (2020). Deep learning-based human activity recognition for continuous activity and gesture monitoring for schizophrenia patients with negative symptoms. Frontiers in Psychiatry, 11, 967. Garcia-Ceja, E., Riegler, M., Jakobsen, P. et al. (2018, June). Depresjon: a motor activity database of depression episodes in unipolar and bipolar patients. Proceedings of the 9th ACM Multimedia Systems Conference (pp. 472-477). Jakobsen, P., Garcia-Ceja, E., Stabell, L. A. et al. (2020, July). Psykose: A motor activity database of patients with schizophrenia. 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 303-308). IEEE. 陳榮陞(2021)。以傅立葉轉換之腕動計資料探討睡眠狀態的特徵與差異。(未出版之碩士論文)。國立臺灣大學流行病學與預防醫學研究所,臺北市。 Smith, D. J., Nicholl, B. I., Cullen, B. et al. (2013). Prevalence and characteristics of probable major depression and bipolar disorder within UK biobank: cross-sectional study of 172,751 participants. PloS One, 8(11), e75362. Smith, S. (2013). Digital signal processing: a practical guide for engineers and scientists. Elsevier. 蘇千蘅(2022)。穿戴式裝置睡眠與活動參數之探索性研究:以UKB資料為例。(未出版之碩士論文)。國立臺灣大學流行病學與預防醫學研究所,臺北市。 Rodríguez-Ruiz, J. G., Galván-Tejada, C. E., Zanella-Calzada, L. A. et al. (2020). Comparison of night, day and 24 h motor activity data for the classification of depressive episodes. Diagnostics, 10(3), 162. Jakobsen, P., Garcia-Ceja, E., Riegler, M. et al. (2020). Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls. Plos One, 15(8), e0231995. Li, H., Zhang, Y., Carroll, R. J. et al. (2017). A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers. Statistics in Medicine, 36(25), 4028-4040. Goldsmith, J., Zipunnikov, V., & Schrack, J. (2015). Generalized multilevel function‐on‐scalar regression and principal component analysis. Biometrics, 71(2), 344-353. Bai, J., Sun, Y., Schrack, J. A. et al. (2018). A two‐stage model for wearable device data. Biometrics, 74(2), 744-752. Bao, L., & Intille, S. S. (2004, April). Activity recognition from user-annotated acceleration data. International Conference on Pervasive Computing (pp. 1-17). Springer, Berlin, Heidelberg. Walse, K. H., Dharaskar, R. V., & Thakare, V. M. (2016). Pca based optimal ann classifiers for human activity recognition using mobile sensors data. In Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 1 (pp. 429-436). Springer, Cham. Smith, D. J., Nicholl, B. I., Cullen, B. et al. (2013). Prevalence and characteristics of probable major depression and bipolar disorder within UK biobank: cross-sectional study of 172,751 participants. PloS One, 8(11), e75362. Lehto, K., Hägg, S., Lu, D. et al. (2020). Childhood adoption and mental health in adulthood: The role of gene-environment correlations and interactions in the UK Biobank. Biological Psychiatry, 87(8), 708-716. Rask-Andersen, M., Karlsson, T., Ek, W. E. et al. (2017). Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genetics, 13(9), e1006977.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85359-
dc.description.abstract近年來,穿戴式裝置被廣泛用於人類活動監測上。在早期的醫學研究中,裝置較常配戴於臀部上,而隨著科技的進度,腕部穿戴式逐漸受到歡迎。由於裝置攜帶方便且紀錄數值具有可信度,因此近年來被用於記錄身體活動。根據裝置中裝設的感測器不同,可紀錄的資料類型也不同,如:加速度、旋轉角度等。此類型資料在分析時需考量多種潛在問題,例如:由於此類型資料為長期追蹤資料,每個人在自身的紀錄中存在著自身的變異,如何在分析時將變異納入考量,以及如何比較不同廠牌裝置的資料等。本研究以頻域的角度分析穿戴式裝置資料,透過活動特徵選取降低資料量,並根據特徵的解釋性對於活動進行解讀及探討其應用的可能性。研究中使用三個資料集(英國人體生物資料庫、DEPRESJON資料集、PSYKOSE資料集)進行分析,其中英國人體生物資料庫中的穿戴式裝置資料透過R軟體GGIR套件(版本.2.3.0)進行品質管理和前處理,DEPRESJON資料集、PSYKOSE資料集則制定數個篩選標準,確保資料品質。本研究將對三個資料集進行活動特徵選取、建立廣義線性混合模型探討族群在平日和假日之間是否具有活動差異和建立族群分類模型。研究結果發現,在頻域中使用5%的週期波即可足夠代表原始的時序資料,且結果並不會因為手錶品牌、資料紀錄時間單位不同而有影響。在英國生物資料庫中,憂鬱症患者及健康受試者的活動受到平日和假日的影響,而性別、年齡、肥胖程度對於活動的影響是較為明顯的。在DEPRESJON資料集、PSYKOSE資料集中建立分類模型,結果可發現加入活動變數可提升模型表現力並可以達到較好的分類效果。由於本研究並無考量週期波之間可能存在的相關性,建議未來研究於頻域分析時可將此納入考量。zh_TW
dc.description.abstractIn recent medical research, wearable devices have been commonly used to monitor human activities. A wearable device could be placed on different parts of the body, previous studies mainly used hip-worn devices to collect data, but wrist-worn devices have become more popular, with their more reliable recordings and smaller device size, allow people to monitor their daily activities more conveniently. Wearable device with different sensors can record various data types, including acceleration, angular velocities, and orientations. However, many problems exist in this kind of data, including how to put the within-subject variability into consideration for longitudinal data analysis and how to compare the data collected by different brands of wearable devices. Our research focuses on analyzing wearable device data on frequency domain and uses tri-accelerometers data to propose a method that selects activity features containing information of amplitude and frequency, thus help explain the meaning of the activity features and build statistical models to explore activity patterns between different populations. We used three datasets (UK Biobank, DEPRESJON dataset, PSYKOSE dataset) for our analysis. The R package GGIR (ver.2.3.0) was used to perform quality control and UK Biobank acceleration data preprocessing, then we set up the selection criteria for the DEPRESJON dataset and the PSYKOSE dataset to ensure data quality. After data preprocessing, we then extracted features and used them to build generalized linear mixed effect models and classification models. Our results suggested that using 5% of periodic waves can represent the original time series data, and the results would not be affected by different brands of wearable devices and different time record units. In analysis on data from UK Biobank, we found out there exist different activity patterns between weekdays and weekends for major depressive disorder (MDD) patients and healthy participants. We also find that gender, age, and BMI are significant factors for human activity. The result for the classification models in the DEPRESJON dataset and the PSYKOSE dataset showed that activity features could improve the model performance and achieve better results. Our research did not consider the correlation between each periodic waves, which we recommend that it can be considered in future research.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:00:06Z (GMT). No. of bitstreams: 1
U0001-1707202216580200.pdf: 6040119 bytes, checksum: 9fce94f057af060692278562308e90ce (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 背景與動機目的 1 1.1 穿戴裝置介紹 1 1.2 腕部穿戴式裝置背景及資料 2 1.3 常見的活動衡量變數 3 1.4 研究動機與目的 6 第二章 材料與方法 8 2.1 快速傅立葉轉換與統計模式 8 2.1.1 快速傅立葉轉換及逆快速傅立葉轉換 9 2.1.2 特徵選取 10 2.1.3 原時序資料與估計時序資料之衡量指標 11 2.2研究方法之發想資料 12 2.2.1 UKB穿戴式資料前處理流程 13 2.2.2 UKB資料篩選流程 14 2.2.3 UKB資料描述 14 2.3 憂鬱研究:DEPRESJON公開資料集 15 2.3.1 DEPRESJON資料集之篩選流程 15 2.3.2 DEPRESJON資料集描述 16 2.4 PSYKOSE公開資料集 17 2.4.1 PSYKOSE資料集之篩選流程 17 2.4.2 PSYKOSE資料集描述 17 2.5 探討不同疾病族群和健康受試者之間活動差異 18 2.6 分類模型建立 19 第三章 結果 23 3.1 穿戴式裝置特徵選取 23 3.1.1 UKB資料集之特徵選取 23 3.1.2 DEPRESJON資料集和PSYKOSE資料集之特徵選取 24 3.2 活動特徵與疾病、時間因素之關聯性 25 3.2.1 UKB資料集之模型 25 3.3.2 DEPRESJON資料集和PSYKOSE資料集之模型 26 3.4 分類模型結果 26 第四章 討論 28 參考文獻 30 表 1 穿戴式裝置研究中常用的幾種手錶以及進行前處理的軟體 35 表 2 UKB資料集之基本資訊及有效監測天數分佈 36 表 3 DEPRESJON資料集之基本資訊及有效監測天數分佈 37 表 4 PSYKOSE資料集之基本資訊及有效監測天數分佈 38 表 5 模型一結果(使用UKB資料集) 39 表 6 模型二結果(使用UKB資料集,p-value < 0.05為顯著) 39 表 7 模型三(使用UKB資料,p-value < 0.05為顯著) 40 表 8 模型一(使用DEPRESJON資料集) 41 表 9 模型一(使用PSYKOSE資料集) 41 表 10 DEPRESJON資料之分類模型(放入頻率0至4的活動變數) 42 表 11 DEPRESJON資料之分類模型(放入頻率0至6的活動變數) 43 表 12 PSYKOSE資料之分類模型(放入頻率0至4的活動變數) 44 表 13 PSYKOSE資料之分類模型(放入頻率0至6的活動變數) 45 圖 1 UKB資料篩選流程 46 圖 2 DEPRESJON資料集所有紀錄天數的activity level之密度圖 47 圖 3 DEPRESJON資料集之資料篩選流程 47 圖 4 PSYKOSE資料集所有紀錄天數的activity level之密度圖 48 圖 5 PSYKOSE資料集之資料篩選流程 48 圖 6 使用5%週期波數量估計之時間序列(使用UKB資料集) 49 圖 7 使用不同數量週期波估計之時間序列和原始資料的Pearson相關係數(使用UKB資料集) 50 圖 8 使用不同數量週期波估計之時間序列和原始資料的Mean Square Error(使用UKB資料集) 50 圖 9 使用不同數量週期波估計之時間序列和原始資料的Relative Absolute Error(使用UKB資料集) 51 圖 10 為達到特定的Pearson correlation所需使用的週期波數量(以%進行表示,使用UKB資料集) 51 圖 11 使用不同數量週期波估計之時間序列和原始資料的Pearson相關係數(使用DEPRESJON資料集) 52 圖 12 使用不同數量週期波估計之時間序列和原始資料的Relative Absolute Error(使用DEPRESJON資料集) 52 圖 13 使用不同數量週期波估計之時間序列和原始資料的Pearson相關係數(使用PSYKOSE資料集) 53 圖 14 使用不同數量週期波估計之時間序列和原始資料的Relative Absolute Error(使用PSYKOSE資料集) 53 圖 15 UKB資料 - 模型一之p-value、係數估計和95%信賴區間 54 圖 16 UKB資料 - 模型二之係數估計和95%信賴區間 55 圖 17 UKB資料 - 模型二之係數p-value 56 圖 18 UKB資料 - 模型三之係數估計和95%信賴區間 57 圖 19 UKB資料 - 模型三之係數p-value 58 圖 20 DEPRESJON資料 - 模型一之p-value、係數估計和95%信賴區間 59 圖 21 PSYKOSE資料 - 模型一之p-value、係數估計和95%信賴區間 59
dc.language.isozh-TW
dc.subject腕部穿戴式裝置zh_TW
dc.subject穿戴式裝置zh_TW
dc.subject活動特徵選取zh_TW
dc.subjectR套件GGIRzh_TW
dc.subjectUK Biobankzh_TW
dc.subject快速傅立葉轉換zh_TW
dc.subjectUK Biobanken
dc.subjectwearable deviceen
dc.subjectwrist-worn accelerometeren
dc.subjectFast Fourier Transformationen
dc.subjectactivity features extractionen
dc.subjectGGIRen
dc.title利用快速傅立葉轉換進行穿戴式裝置資料特徵變數之選取zh_TW
dc.titleFeature selection with Fast Fourier Transformation of wearable device dataen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-7852-0514
dc.contributor.coadvisor王彥雯(Charlotte Wang)
dc.contributor.oralexamcommittee郭柏秀(Po-Hsiu Kuo),馮嬿臻(Yen-Chen Anne Feng)
dc.subject.keyword穿戴式裝置,腕部穿戴式裝置,快速傅立葉轉換,活動特徵選取,R套件GGIR,UK Biobank,zh_TW
dc.subject.keywordwearable device,wrist-worn accelerometer,Fast Fourier Transformation,activity features extraction,GGIR,UK Biobank,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202201511
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-22
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2024-08-31-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1707202216580200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved