請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85338完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱雅萍(Ya-Ping Chiu) | |
| dc.contributor.author | Liang-Yu Chen | en |
| dc.contributor.author | 陳亮宇 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:58:39Z | - |
| dc.date.copyright | 2022-07-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-26 | |
| dc.identifier.citation | 1. Meikei Ieong, et al. Silicon Device Scaling to the Sub-10-nm Regime. Science 306, 2057-2060 (2004). 2. Frank DJ, et al. Device scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE 89, 259-288 (2001). 3. Xie Q, et al. Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold. IEEE Transactions on Electron Devices 59, 1569-1579 (2012). 4. Radisavljevic B, et al. Single-layer MoS2 transistors. Nature Nanotechnology 6, 147-150 (2011). 5. Groenewald RE, et al. Valley plasmonics in transition metal dichalcogenides. Physical Review B 93, 205145 (2016). 6. Huang YL, et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6, 6298 (2015). 7. Kirby K. H. Smithe, et al. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Materials 4, 011009 (2017). 8. Jiang Y, et al. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light: Science & Applications 10, 72 (2021). 9. Rivera P, et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Communications 6, 6242 (2015). 10. Zhang C, et al. Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction. Nature Communications 7, 10349 (2016). 11. Costanzo D, et al. Tunnelling spectroscopy of gate-induced superconductivity in MoS2. Nature Nanotechnology 13, 483-488 (2018). 12. J. T. Ye, et al. Superconducting Dome in a Gate-Tuned Band Insulator. science 338, 1193-1196 (2012). 13. Huang Q, et al. The Mechanistic Insights into the 2H-1T Phase Transition of MoS2 upon Alkali Metal Intercalation: From the Study of Dynamic Sodiation Processes of MoS2 Nanosheets. Advanced Materials Interfaces 4, 1700171 (2017). 14. Chen K, et al. Charge doping induced reversible multistep structural phase transitions and electromechanical actuation in two-dimensional 1T'-MoS2. Nanoscale 12, 12541-12550 (2020). 15. Rösner M, et al. Phase diagram of electron-doped dichalcogenides. Physical Review B 90, 245105 (2014). 16. Zhang R, et al. Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2. Nano Letters 16, 629-636 (2016). 17. Bin Subhan MK, et al. Charge Density Waves in Electron-Doped Molybdenum Disulfide. Nano Lett 21, 5516-5521 (2021). 18. Kolekar S, et al. Controlling the Charge Density Wave Transition in Monolayer TiSe2 : Substrate and Doping Effects. Advanced Quantum Technologies 1, 1800070 (2018). 19. Wang S-Z, et al. Charge density waves and Fermi level pinning in monolayer and bilayer SnSe2. Physical Review B 102, 241408(R) (2020). 20. Mao Y-H, et al. Observation of pseudogap in SnSe2 atomic layers grown on graphite. Frontiers of Physics 15, 43501 (2020). 21. Shen PC, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211-217 (2021). 22. Piatti E, et al. Multi-Valley Superconductivity in Ion-Gated MoS2 Layers. Nano Letters 18, 4821-4830 (2018). 23. Piatti E, et al. Mapping multi-valley Lifshitz transitions induced by field-effect doping in strained MoS2 nanolayers. Journal of Physics: Condensed Matter 31, 114002 (2019). 24. Fang H, et al. Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium. Nano Letters 13, 1991-1995 (2013). 25. Efros AL, Shklovskii BI. Coulomb gap and low temperature conductivity of disordered systems. Journal of Physics C: Solid State Physics 8, L49 (1975). 26. Moon BH, et al. Soft Coulomb gap and asymmetric scaling towards metal-insulator quantum criticality in multilayer MoS2. Nature Communications 9, 2052 (2018). 27. Song Y-H, et al. Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T’-WTe2. Nature Communications 9, 4071 (2018). 28. Sohier T, et al. Enhanced Electron-Phonon Interaction in Multivalley Materials. Physical Review X 9, 031019 (2019). 29. Binnig G, et al. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 49, 57-61 (1982). 30. Binnig G, Rohrer H. Scanning tunneling microscopy. Surface science 126, 236-244 (1983). 31. Kormányos A, et al. k· p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Materials 2, 022001 (2015). 32. Lee J, et al. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nature Nanotechnology 11, 421-425 (2016). 33. Roch JG, et al. Spin-polarized electrons in monolayer MoS2. Nature Nanotechnology 14, 432-436 (2019). 34. Hänke T, et al. Probing the Unconventional Superconducting State of LiFeAs by Quasiparticle Interference. Physical Review Letters 108, 127001 (2012). 35. Liu H, et al. Observation of intervalley quantum interference in epitaxial monolayer tungsten diselenide. Nature Communications 6, 8180 (2015). 36. Chen H-Y, et al. Directly Visualizing Photoinduced Renormalized Momentum-Forbidden Electronic Quantum States in an Atomically Thin Semiconductor. ACS Nano, 9660–9666 (2022). 37. Garcia-Goiricelaya P, et al. Long-living carriers in a strong electron–phonon interacting two-dimensional doped semiconductor. Communications Physics 2, (2019). 38. Mott NF, Twose W. The theory of impurity conduction. Advances in physics 10, 107-163 (1961). 39. Zhao Y, Wang J. Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device. Micromachines 13, 707 (2022). 40. Chen T, Skinner B. Enhancement of hopping conductivity by spontaneous fractal ordering of low-energy sites. Physical Review B 94, 085146 (2016). 41. He Z, et al. Electrostatically Enhanced Electron–Phonon Interaction in Monolayer 2H-MoSe2 Grown by Molecular Beam Epitaxy. ACS Applied Materials & Interfaces 12, 44067-44073 (2020). 42. Peng L, et al. Visualizing topological edge states of single and double bilayer Bi supported on multibilayer Bi(111) films. Physical Review B 98, 235115 (2018). 43. Drozdov IK, et al. One-dimensional topological edge states of bismuth bilayers. Nature Physics 10, 664-669 (2014). 44. Vancsó P, et al. The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy. Scientific Reports 6, 29726 (2016). 45. Hofmann P. The surfaces of bismuth: Structural and electronic properties. Progress in Surface Science 81, 191-245 (2006). 46. Lu C-I, et al. Moiré-related in-gap states in a twisted MoS2/graphite heterojunction. npj 2D Materials and Applications 1, (2017). 47. Brumme T, et al. First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity. Physical Review B 91, 155436 (2015). 48. Pielic B, et al. Electronic Structure of Quasi-Freestanding WS2/MoS2 Heterostructures. ACS Appl Mater Interfaces 13, 50552-50563 (2021). 49. Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature Materials 12, 815-820 (2013). 50. Lambe J, Jaklevic RC. Charge-Quantization Studies Using a Tunnel Capacitor. Physical Review Letters 22, 1371-1375 (1969). 51. C. SCH~NENBERGER HVHaHCD. Single-Electron Tunnelling Observed at Room Temperature by Scanning-Tunnelling Microscopy. EUROPHYSICS LE'ITERS, 249-254 (1992). 52. Schuler B, et al. How Substitutional Point Defects in Two-Dimensional WS2 Induce Charge Localization, Spin–Orbit Splitting, and Strain. ACS Nano 13, 10520-10534 (2019). 53. T Le Quang, et al. Band-bending induced by charged defects and edges of atomically thin transition metal dichalcogenide films. 2D Materials 5, 035034 (2018). 54. Cochrane KA, et al. Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS2. Nature Communications 12, (2021). 55. Cochrane KA, et al. Intentional carbon doping reveals CH as an abundant charged impurity in nominally undoped synthetic WS2 and WSe2. 2D Materials 7, (2020). 56. Ugeda MM, et al. Characterization of collective ground states in single-layer NbSe2. Nature Physics 12, 92-97 (2015). 57. Dhakal KP, et al. Probing Multiphased Transition in Bulk MoS2 by Direct Electron Injection. ACS Nano 13, 14437-14446 (2019). 58. Jebli M, et al. Structural and morphological studies, and temperature/frequency dependence of electrical conductivity of Ba0.97La0.02Ti1−xNb4x/5O3 perovskite ceramics. RSC Advances 11, 23664-23678 (2021). 59. Zhuang HL, et al. Doping-controlled phase transitions in single-layer MoS2. Physical Review B 96, 165305 (2017). 60. Kim C, et al. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 11, 1588-1596 (2017). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85338 | - |
| dc.description.abstract | 近年來高摻雜濃度的二維過渡金屬硫化物半導體所展現出新穎材料物質表現,如:超導(superconductivity)、電荷密度波(charge density wave, CDW)或是相變(phase transition)引人研究高度興趣。其中,以半金屬作為基板並與二維半導體材料接合後,因為半金屬的費米能階很靠近二維半導體材料的導帶最低能量態,因趨往低能量的考量,使得半金屬基板的電子轉移電子到二維半導體材料。半金屬基板與半導體二維材料平衡後的費米能階位置,也影響二維半導體在此異質系統中的載子傳輸特性。然而,以半金屬作為基板,探討半金屬與二維材料單一原子層之間的耦合效應,仍是個未知且重要的課題。 本研究工作使用低溫掃描穿隧顯微鏡和掃描穿隧能譜(LT-STM/S)量測原子級單層二硫化鉬(MoS2)受到半金屬鉍(Bismuth)基板層間耦合效應後導致的電性變化。藉由實驗上的能態密度的電性量測和準粒子干涉(quasi-particle interference, QPI)表現,發現到二硫化鉬的導帶Q點能谷低於費米能階。推得此二維材料/半金屬(MoS2/Bi)系統的層間耦合效應,使得二硫化鉬的導帶邊界能態會比費米能階低約0.12eV。 再者,在高摻雜濃度的二維材料系統中,低溫的量測情況之下,電子與電洞間的庫倫靜電作用導致的庫倫能隙(Coulomb gap)和電子與聲子耦合導致原子位移所產生的能帶變化則顯得相對重要,使得費米能階處的能態密度因電子與電洞以及電子與聲子間的效應而發生顯著變化。實驗數據分析上,透過不同能量下的傅立葉影像分析以及非接觸原子力顯微技術(non-contact atomic force microscope, nc-AFM),實驗結果發現:透過半金屬鉍提供電子摻雜到二硫化鉬後,此異質結構系統的二硫化鉬產生(2×1)的原子形貌重構影響費米能階處的能量狀態密度電子結構。 | zh_TW |
| dc.description.abstract | The two-dimensional (2D) semiconductor/semimetal junction exhibits an intriguing interfacial electronic property compared to the normal 2D semiconductor/metal junction. Because the Fermi-level of semimetals is very close to the conduction band (CB) of 2D semiconductors, the 2D transition metal dichalcogenides (TMDs) will be doped by the electrons transferring from the semimetal substrate in this system. In the equilibrium condition, however, the energetic position of the Fermi-level in the 2D semiconductor/semimetal junction dominates the carrier transport properties. Therefore, providing a complete understanding of the electronic behavior and insight into the interfacial electronic coupling in the TMDs on the semimetal substrate system becomes a key to future two-dimensional TMDs-based technologies. In this work, we use low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/S) to figure out the electron doping behavior on the monolayer molybdenum disulfide (MoS2) by the bismuth substrate. The experimental results show the electronic behavior in this system, confirming the position of the Fermi level in the MoS2/Bi system is energetically higher than the MoS2 conduction band minimum of about 0.12 V by dI/dV measurements, and the quasi-particle interference (QPI) technique. Further, in such high electron-doped samples and at the low-temperature experimental conditions, the electron-hole Coulomb interaction and electron-phonon interaction are significant, lead to the modification of the density of states (DOS) at the Fermi level. Through the Fourier Transform (FT) analysis at different energies and non-contact atomic force microscopy (nc-AFM), the electron-doped on monolayer MoS2 by the semimetal bismuth substrate induces a (2×1) structural reconstruction, resulting in the modulation of the DOS electronic structure of MoS2. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:58:39Z (GMT). No. of bitstreams: 1 U0001-0707202200224000.pdf: 3184562 bytes, checksum: 55099c47a0e438ba2c55c328e1f5a027 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II ABSTRACT III CONTENTS V LIST OF FIGURES CAPTIONS VII LIST OF ABBREVIATIONS IX CHAPTER 1. INTRODUCTION 1 CHAPTER 2. EXPERIMENT METHOD 4 2-1 Scanning tunneling microscope (STM) 4 2-1-1 tunneling effect 4 2-1-2 Scanning tunneling spectroscopy (STS) 7 2-2 Scan mode 8 2-2-1 Constant height mode 8 2-2-2 constant current mode 8 2-2-3 I(V) Spectroscopy 9 2-2-4 Lock-in amplifier operation for dI/dV mapping 10 2-2-5 Current Imaging Tunneling Spectroscopy (CITS) 11 Chapter 3 Experiment Instrument and Method 12 3-1 Low-Temperature STM 12 3-2 Ultra-High Vacuum system (UHV system) 13 3-2-1 Vacuum Gauge 13 3-2-2 Vacuum Pump 14 3-2-3 Backing 16 3-2-4 Outgas 17 3-3 STM Scanning system 18 3-3-1 Scanner 18 3-3-2 Stepper 18 3-3-3 Tip 19 3-3-4 Suspension System 20 Chapter 4 Measurement principle 21 4.1 Band theory in TMDs 21 4.1.1 Introduction of the energy gap in TMDs 21 4.1.2 doping changes the Fermi level position 21 4.1.3 band structure and valley in TMDs 22 4.2.1 Introduction of the QPI phenomenon 24 4.2.2 QPI measurement method 24 4.2.3 Valley scattering 25 4.3 Electron-hole coupling 27 4.3.1 Introduction of the varying-range-hopping (VRH) conduction 27 4.3.2 Coulomb gap 28 4.4 Electron-phonon coupling 30 4.4.1 Introduction of the electron-phonon coupling (EPC) 30 4.4.2 Fermi surface nesting (FSN) 31 Chapter 5 Experiment result and discussion 33 5.1 Sample information 33 5.1.1 Topography of MoS2/Bismuth(111) 33 5.1.2 2D Fourier Transform of the Moiré stacking information 36 5.1.3 Scanning tunneling spectroscopy (STS) of MoS2/Bismuth(111) 38 5.2 Mechanism of the opening gap around Fermi level _ electron-hole coupling 41 5.2.1 2D Fourier-Transform of dI/dV-image 42 5.2.2 Energy-dependent evolution of the cross-sectional intensity curve 45 5.2.3 Coulomb gap in negative charged defect 49 5.3 Mechanism of the opening gap around Fermi level _ electron-phonon coupling 52 5.3.1 STS and FFT intensity comparison 52 5.3.2 q-plus sensor (non-contact AFM) map 54 5.3.3 q-plus and dI/dV FT-map comparison 55 5.3.4 Fermi surface nesting in MoS2/Bi(111) 57 5.4 Effect of density of state reshaped around EF 59 5.4.1 Metal-induced gap state reduce 59 Chapter 6 Conclusion 61 Reference 62 | |
| dc.language.iso | en | |
| dc.subject | 掃描穿隧顯微鏡 | zh_TW |
| dc.subject | 電子聲子耦合 | zh_TW |
| dc.subject | 電子摻雜 | zh_TW |
| dc.subject | 庫倫能隙 | zh_TW |
| dc.subject | 半金屬 | zh_TW |
| dc.subject | 二維過渡金屬硫化物 | zh_TW |
| dc.subject | scanning tunneling microscopy | en |
| dc.subject | electron-phonon coupling | en |
| dc.subject | Coulomb gap | en |
| dc.subject | electron doping | en |
| dc.subject | semimetals | en |
| dc.subject | transition metal dichalcogenides | en |
| dc.title | 探討半金屬基板和二維材料之間的介面電子耦合效應 | zh_TW |
| dc.title | Interfacial Electronic Coupling of the Two-dimensional Material and Semimetal Substrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張嘉升(Chia-Seng Chang),魏金明(Ching-Ming Wei),李明洋(Ming-Yang Li) | |
| dc.subject.keyword | 掃描穿隧顯微鏡,二維過渡金屬硫化物,半金屬,電子摻雜,庫倫能隙,電子聲子耦合, | zh_TW |
| dc.subject.keyword | scanning tunneling microscopy,transition metal dichalcogenides,semimetals,electron doping,Coulomb gap,electron-phonon coupling, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202201316 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-26 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0707202200224000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
