請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85333完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫(Bor-Luen Chiang) | |
| dc.contributor.author | Chien-Chia Liao | en |
| dc.contributor.author | 廖建嘉 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:58:18Z | - |
| dc.date.copyright | 2022-10-03 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-26 | |
| dc.identifier.citation | Whitsett, J.A., Airway epithelial differentiation and mucociliary clearance. Ann Am Thorac Soc, 2018. 15(Suppl 3): p. S143-S148. 2. Rock, J.R. and B.L.M. Hogan, Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol, 2011. 27(1): p. 493-512. 3. Hogan, B.L., et al., Repair and regeneration of the respiratory system: Complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell, 2014. 15(2): p. 123-38. 4. Fahy, J.V. and B.F. Dickey, Airway mucus function and dysfunction. N Engl J Med, 2010. 363(23): p. 2233-47. 5. Atanasova, K.R. and L.R. Reznikov, Strategies for measuring airway mucus and mucins. Respir Res, 2019. 20(1): p. 261. 6. Roy, M.G., et al., Muc5b is required for airway defence. Nature, 2014. 505(7483): p. 412-6. 7. Evans, C.M., et al., The polymeric mucin muc5ac is required for allergic airway hyperreactivity. Nat Commun, 2015. 6: p. 6281. 8. Chen, L.C., et al., Cutting edge: Altered pulmonary eosinophilic inflammation in mice deficient for clara cell secretory 10-kda protein. J Immunol, 2001. 167(6): p. 3025-8. 9. Wang, S.Z., et al., Ccsp modulates airway dysfunction and host responses in an ova-challenged mouse model. Am J Physiol Lung Cell Mol Physiol, 2001. 281(5): p. L1303-11. 10. Wang, S.Z., et al., Clara cell secretory protein modulates lung inflammatory and immune responses to respiratory syncytial virus infection. J Immunol, 2014. 171(2): p. 1051-1060. 11. A., V.L., Pulmonary neuroendocrine cells (pnec) and neuroepithelial bodies (neb): Chemoreceptors and regulators of lung development. Paediatr Respir Rev., 2001. 2(2): p. 171-176. 12. Munkholm, M. and J. Mortensen, Mucociliary clearance: Pathophysiological aspects. Clin Physiol Funct Imaging, 2014. 34(3): p. 171-7. 13. Bustamante-Marin, X.M. and L.E. Ostrowski, Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol, 2017. 9(4). 14. Bove, P.F., et al., Human alveolar type ii cells secrete and absorb liquid in response to local nucleotide signaling. J Biol Chem, 2010. 285(45): p. 34939-49. 15. McCormack, F.X. and J.A. Whitsett, The pulmonary collectins, sp-a and sp-d, orchestrate innate immunity in the lung. J Clin Invest, 2002. 109(6): p. 707-12. 16. Glasser, S.W., et al., Surfactant protein c-deficient mice are susceptible to respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol, 2009. 297(1): p. L64-72. 17. Glasser, S.W., et al., Persistence of lps-induced lung inflammation in surfactant protein-c-deficient mice. Am J Respir Cell Mol Biol, 2013. 49(5): p. 845-54. 18. Desai, T.J., D.G. Brownfield, and M.A. Krasnow, Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 2014. 19. Chao, C.M., et al., A breath of fresh air on the mesenchyme: Impact of impaired mesenchymal development on the pathogenesis of bronchopulmonary dysplasia. Front Med (Lausanne), 2015. 2: p. 27. 20. Varma, R., et al., Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev, 2020. 161-162: p. 90-109. 21. Alanis, D.M., et al., Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat Commun, 2014. 5: p. 3923. 22. Yang, J. and J. Chen, Developmental programs of lung epithelial progenitors: A balanced progenitor model. Wiley Interdiscip Rev Dev Biol, 2014. 3(5): p. 331-47. 23. Herriges, M. and E.E. Morrisey, Lung development: Orchestrating the generation and regeneration of a complex organ. Development, 2014. 141(3): p. 502-13. 24. Goss, A.M., et al., Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell, 2009. 17(2): p. 290-8. 25. Rackley, C.R. and B.R. Stripp, Building and maintaining the epithelium of the lung. J Clin Invest, 2012. 122(8): p. 2724-30. 26. Maeda, Y., V. Dave, and J.A. Whitsett, Transcriptional control of lung morphogenesis. Physiol Rev, 2007. 87(1): p. 219-44. 27. Perl, A.K., et al., Normal lung development and function after sox9 inactivation in the respiratory epithelium. Genesis, 2005. 41(1): p. 23-32. 28. Zhu, Y., et al., The role of sox genes in lung morphogenesis and cancer. Int J Mol Sci, 2012. 13(12): p. 15767-15783. 29. Blatt EN, Y.X., Wuerffel MK, Hamilos DL, Brody SL., Forkhead transcription factor hfh-4 expression is temporally related to ciliogenesis. Am J Respir Cell Mol Biol, 1999. 21(2): p. 168-76. 30. Park, K.S., et al., Spdef regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest, 2007. 117(4): p. 978-88. 31. Chen, G., et al., Spdef is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest, 2009. 119(10): p. 2914-24. 32. Daniely Y, L.G., Dixon D, Linnoila RI, Lori A, Randell SH, Oren M, Jetten AM., Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol, 2004. 287(1): p. C171-81. 33. Kotton, D.N. and E.E. Morrisey, Lung regeneration: Mechanisms, applications and emerging stem cell populations. Nat Med, 2014. 20(8): p. 822-32. 34. Rawlins, E.L. and B.L. Hogan, Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol, 2008. 295(1): p. L231-4. 35. Tata, P.R. and J. Rajagopal, Plasticity in the lung: Making and breaking cell identity. Development, 2017. 144(5): p. 755-766. 36. Kim, C.F., et al., Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 2005. 121(6): p. 823-35. 37. Schilders, K.A., et al., Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Respir Res, 2016. 17: p. 44. 38. Chapman, H.A., et al., Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest, 2011. 121(7): p. 2855-62. 39. Rock, J.R., et al., Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A, 2009. 106(31): p. 12771-5. 40. Pardo-Saganta, A., et al., Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell, 2015. 16(2): p. 184-97. 41. Kiyokawa, H. and M. Morimoto, Notch signaling in the mammalian respiratory system, specifically the trachea and lungs, in development, homeostasis, regeneration, and disease. Dev Growth Differ, 2020. 62(1): p. 67-79. 42. Myung, P. and V. Greco, Stem cells show parental control. Cell, 2015. 162(3): p. 476-7. 43. Hong KU, R.S., Giangreco A, Hurley CM, Stripp BR., Clara cell secretory protein–expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol, 2001. 6: p. 671-681. 44. Tata, P.R., et al., Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature, 2013. 503(7475): p. 218-23. 45. Frank, D.B., et al., Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proc Natl Acad Sci U S A, 2019. 116(10): p. 4362-4371. 46. Barkauskas, C.E., et al., Type 2 alveolar cells are stem cells in adult lung. J Clin Invest, 2013. 123(7): p. 3025-36. 47. Jain, R., et al., Plasticity of hopx(+) type i alveolar cells to regenerate type ii cells in the lung. Nat Commun, 2015. 6: p. 6727. 48. Lee, J.H., et al., Lung stem cell differentiation in mice directed by endothelial cells via a bmp4-nfatc1-thrombospondin-1 axis. Cell, 2014. 156(3): p. 440-55. 49. Jones-Freeman, B. and M.R. Starkey, Bronchioalveolar stem cells in lung repair, regeneration and disease. J Pathol, 2020. 252(3): p. 219-226. 50. Liu, Q., et al., Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nat Genet, 2019. 51(4): p. 728-738. 51. Liu, K., et al., Bi-directional differentiation of single bronchioalveolar stem cells during lung repair. Cell Discov, 2020. 6: p. 1. 52. Volckaert, T. and S.P. De Langhe, Wnt and fgf mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn, 2015. 244(3): p. 342-66. 53. Danopoulos, S., J. Shiosaki, and D. Al Alam, Fgf signaling in lung development and disease: Human versus mouse. Front Genet, 2019. 10: p. 170. 54. Aros, C.J., C.J. Pantoja, and B.N. Gomperts, Wnt signaling in lung development, regeneration, and disease progression. Commun Biol, 2021. 4(1): p. 601. 55. Mucenski, M.L., et al., Beta-catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem, 2003. 278(41): p. 40231-8. 56. Shu, W., et al., Wnt/beta-catenin signaling acts upstream of n-myc, bmp4, and fgf signaling to regulate proximal-distal patterning in the lung. Dev Biol, 2005. 283(1): p. 226-39. 57. Sekine, K., et al., Fgf10 is essential for limb and lung formation. Nat Genet, 1999. 21(1): p. 138-41. 58. De Moerlooze, L., et al., An important role for the iiib isoform of fibroblast growth factor receptor 2 (fgfr2) in mesenchymal-epithelial signalling during mouse organogenesis. Development, 2000. 127(3): p. 483-92. 59. Guo, L., L. Degenstein, and E. Fuchs, Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev, 1996. 10(2): p. 165-75. 60. Padela, S., et al., A critical role for fibroblast growth factor-7 during early alveolar formation in the neonatal rat. Pediatr Res, 2008. 63(3): p. 232-8. 61. Tichelaar, J.W., W. Lu, and J.A. Whitsett, Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem, 2000. 275(16): p. 11858-64. 62. Yildirim, A.O., et al., Keratinocyte growth factor protects against clara cell injury induced by naphthalene. Eur Respir J, 2008. 32(3): p. 694-704. 63. Gupte, V.V., et al., Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med, 2009. 180(5): p. 424-36. 64. Tanjore, H., et al., Β-catenin in the alveolar epithelium protects from lung fibrosis after intratracheal bleomycin. Am J Respir Crit Care Med, 2013. 187(6): p. 630-9. 65. Hsu, H.S., et al., Repair of naphthalene-induced acute tracheal injury by basal cells depends on β-catenin. J Thorac Cardiovasc Surg, 2014. 148(1): p. 322-32. 66. Yin, X., et al., Engineering stem cell organoids. Cell Stem Cell, 2016. 18(1): p. 25-38. 67. Barkauskas, C.E., et al., Lung organoids: Current uses and future promise. Development, 2017. 144(6): p. 986-997. 68. Gkatzis, K., et al., Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. Eur Respir J, 2018. 52(5). 69. Bar-Ephraim, Y.E., K. Kretzschmar, and H. Clevers, Organoids in immunological research. Nat Rev Immunol, 2020. 20(5): p. 279-293. 70. Tadokoro, T., et al., Il-6/stat3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A, 2014. 111(35): p. E3641-9. 71. Danahay, H., et al., Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep, 2015. 10(2): p. 239-52. 72. Zheng, D., et al., Differentiation of club cells to alveolar epithelial cells in vitro. Sci Rep, 2017. 7: p. 41661. 73. Lee, J.H., et al., Anatomically and functionally distinct lung mesenchymal populations marked by lgr5 and lgr6. Cell, 2017. 170(6): p. 1149-1163 e12. 74. Frank, D.B., et al., Emergence of a wave of wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep, 2016. 17(9): p. 2312-2325. 75. Zepp, J.A., et al., Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell, 2017. 170(6): p. 1134-1148 e10. 76. Zacharias, W.J., et al., Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature, 2018. 555(7695): p. 251-255. 77. Lu, T., et al., Organoid: A powerful tool to study lung regeneration and disease. Cell Regen, 2021. 10(1): p. 21. 78. Li, M. and J.C. Izpisua Belmonte, Organoids - preclinical models of human disease. N Engl J Med, 2019. 380(6): p. 569-579. 79. Gollwitzer, E.S., et al., Lung microbiota promotes tolerance to allergens in neonates via pd-l1. Nat Med, 2014. 20(6): p. 642-7. 80. de Kleer, I.M., et al., Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity, 2016. 45(6): p. 1285-1298. 81. Saluzzo, S., et al., First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep, 2017. 18(8): p. 1893-1905. 82. Steer, C.A., et al., Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. J Allergy Clin Immunol, 2017. 140(2): p. 593-595 e3. 83. Wirtz, S., et al., Functional contribution and targeted migration of group-2 innate lymphoid cells in inflammatory lung diseases: Being at the right place at the right time. Front Immunol, 2021. 12: p. 688879. 84. Cheon, I.S., et al., Neonatal hyperoxia promotes asthma-like features through il-33-dependent ilc2 responses. J Allergy Clin Immunol, 2018. 142(4): p. 1100-1112. 85. Tang, X., Interleukin-33 (il-33) increases hyperoxia-induced bronchopulmonary dysplasia in newborn mice by regulation of inflammatory mediators. Med Sci Monit, 2018. 24: p. 6717-6728. 86. Jin, R., et al., Il-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov, 2020. 6: p. 33. 87. Lao, J.C., et al., Type 2 immune polarization is associated with cardiopulmonary disease in preterm infants. Sci Transl Med, 2022. 14(639): p. eaaz8454. 88. Roux, X., et al., Neonatal lung immune responses show a shift of cytokines and transcription factors toward th2 and a deficit in conventional and plasmacytoid dendritic cells. Eur J Immunol, 2011. 41(10): p. 2852-61. 89. Parekh, K.R., et al., Stem cells and lung regeneration. Am J Physiol Cell Physiol, 2020. 319(4): p. C675-C693. 90. Kerr, M.A. and S. Craig Stocks, The role of cd15-(lex)-related carbohydrates in neutrophil adhesion. The Histochemical Journal, 1992. 24(11): p. 811-826. 91. Lucka, L., et al., Identification of lewis x structures of the cell adhesion molecule ceacam1 from human granulocytes. Glycobiology, 2005. 15(1): p. 87-100. 92. Cui, L., et al., Spatial distribution and initial changes of ssea-1 and other cell adhesion-related molecules on mouse embryonic stem cells before and during differentiation. J Histochem Cytochem, 2004. 52(11): p. 1447-57. 93. Faherty, S., M.T. Kane, and L.R. Quinlan, Self-renewal and differentiation of mouse embryonic stem cells as measured by oct 4 gene expression: Effects of lif, serum-free medium, retinoic acid, and dbcamp. In Vitro Cell Dev Biol Anim, 2005. 41(10): p. 356-63. 94. Capela, A. and S. Temple, Lex/ssea-1 is expressed by adult mouse cns stem cells, identifying them as nonependymal. Neuron, 2002. 35(5): p. 865-75. 95. Yanagisawa, M., et al., Characterization of glycoconjugate antigens in mouse embryonic neural precursor cells. J Neurochem, 2005. 95(5): p. 1311-20. 96. Ling, T.Y., et al., Identification of pulmonary oct-4+ stem/progenitor cells and demonstration of their susceptibility to sars coronavirus (sars-cov) infection in vitro. Proc Natl Acad Sci U S A, 2006. 103(25): p. 9530-5. 97. Xing, Y., et al., Signaling via alk5 controls the ontogeny of lung clara cells. Development, 2010. 137(5): p. 825-33. 98. Nishihara, S., et al., Alpha1,3-fucosyltransferase ix (fut9) determines lewis x expression in brain. Glycobiology, 2003. 13(6): p. 445-55. 99. Yagi, H., et al., Lewis x-carrying n-glycans regulate the proliferation of mouse embryonic neural stem cells via the notch signaling pathway. J Biol Chem, 2012. 287(29): p. 24356-64. 100. Kapere Ochieng, J., et al., Differentiated type ii pneumocytes can be reprogrammed by ectopic sox2 expression. Plos one, 2014. 9(9): p. e107248. 101. Chaubey, S., et al., Alpha1,3-fucosyltransferase-ix, an enzyme of pulmonary endogenous lung stem cell marker ssea-1, alleviates experimental bronchopulmonary dysplasia. Pediatr Res, 2021. 89(5): p. 1126-1135. 102. Chiu, C.J., T.Y. Ling, and B.L. Chiang, Lung-derived ssea-1(+) stem/progenitor cells inhibit allergic airway inflammation in mice. Allergy, 2015. 70(4): p. 374-83. 103. Bonenfant, N.R., et al., The effects of storage and sterilization on de-cellularized and re-cellularized whole lung. Biomaterials, 2013. 34(13): p. 3231-45. 104. Ewels, P., et al., Multiqc: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 2016. 32(19): p. 3047-8. 105. Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114-20. 106. Kim, D., B. Langmead, and S.L. Salzberg, Hisat: A fast spliced aligner with low memory requirements. Nat Methods, 2015. 12(4): p. 357-60. 107. Sahraeian, S.M.E., et al., Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum rna-seq analysis. Nat Commun, 2017. 8(1): p. 59. 108. Liao, Y., G.K. Smyth, and W. Shi, Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014. 30(7): p. 923-30. 109. Wang, L., et al., Degseq: An r package for identifying differentially expressed genes from rna-seq data. Bioinformatics, 2010. 26(1): p. 136-8. 110. Li, B., et al., Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis. Sci Rep, 2016. 6: p. 35224. 111. Maza, E., In papyro comparison of tmm (edger), rle (deseq2), and mrn normalization methods for a simple two-conditions-without-replicates rna-seq experimental design. Front Genet, 2016. 7: p. 164. 112. Anders, S., et al., Count-based differential expression analysis of rna sequencing data using r and bioconductor. Nat Protoc, 2013. 8(9): p. 1765-86. 113. Yu, G., et al., Clusterprofiler: An r package for comparing biological themes among gene clusters. Omics, 2012. 16(5): p. 284-7. 114. Li, K., et al., Airway epithelial regeneration requires autophagy and glucose metabolism. Cell Death Dis, 2019. 10(12): p. 875. 115. McQualter, J.L., et al., Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A, 2010. 107(4): p. 1414-9. 116. Rabata, A., et al., 3d cell culture models demonstrate a role for fgf and wnt signaling in regulation of lung epithelial cell fate and morphogenesis. Front Cell Dev Biol, 2020. 8: p. 574. 117. Akram, K.M., et al., Lung regeneration: Endogenous and exogenous stem cell mediated therapeutic approaches. Int J Mol Sci, 2016. 17(1): p. 128. 118. Hong, K.U., et al., In vivo differentiation potential of tracheal basal cells: Evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol, 2004. 286(4): p. L643-9. 119. Whitsett, J.A. and T. Alenghat, Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol, 2015. 16(1): p. 27-35. 120. Marone, G., et al., The intriguing role of interleukin 13 in the pathophysiology of asthma. Front Pharmacol, 2019. 10: p. 1387. 121. Nadkarni, R.R., S. Abed, and J.S. Draper, Organoids as a model system for studying human lung development and disease. Biochem Biophys Res Commun, 2016. 473(3): p. 675-82. 122. Giangreco, A., S.D. Reynolds, and B.R. Stripp, Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol, 2002. 161(1): p. 173-82. 123. Zacharek, S.J., et al., Lung stem cell self-renewal relies on bmi1-dependent control of expression at imprinted loci. Cell Stem Cell, 2011. 9(3): p. 272-81. 124. Kathiriya, J.J., et al., Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration. Cell Stem Cell, 2020. 26(3): p. 346-358 e4. 125. Giuranno, L., et al., Notch signaling promotes the survival of irradiated basal airway stem cells. Am J Physiol Lung Cell Mol Physiol, 2019. 317(3): p. L414-L423. 126. Shiraishi, K., et al., Mesenchymal-epithelial interactome analysis reveals essential factors required for fibroblast-free alveolosphere formation. iScience, 2019. 11: p. 318-333. 127. Nichane, M., et al., Isolation and 3d expansion of multipotent sox9(+) mouse lung progenitors. Nat Methods, 2017. 14(12): p. 1205-1212. 128. Michael, S., et al., Inflammation shapes stem cells and stemness during infection and beyond. Front Cell Dev Biol, 2016. 4: p. 118. 129. Wynn, T.A. and K.M. Vannella, Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016. 44(3): p. 450-462. 130. Lloyd, C.M. and R.J. Snelgrove, Type 2 immunity: Expanding our view. Sci Immunol, 2018. 3(25). 131. Monticelli, L.A., et al., Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol, 2011. 12(11): p. 1045-54. 132. Lechner, A.J., et al., Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell, 2017. 21(1): p. 120-134 e7. 133. Que, J., et al., Multiple roles for sox2 in the developing and adult mouse trachea. Development, 2009. 136(11): p. 1899-907. 134. Danopoulos, S., et al., Human lung branching morphogenesis is orchestrated by the spatiotemporal distribution of acta2, sox2, and sox9. Am J Physiol Lung Cell Mol Physiol, 2018. 314(1): p. L144-L149. 135. Li, L., et al., Sox9 inactivation affects the proliferation and differentiation of human lung organoids. Stem Cell Res Ther, 2021. 12(1): p. 343. 136. Li, L., et al., Sox9 activation is essential for the recovery of lung function after acute lung injury. Cell Physiol Biochem, 2015. 37(3): p. 1113-22. 137. Lane, S.W., D.A. Williams, and F.M. Watt, Modulating the stem cell niche for tissue regeneration. Nat Biotechnol, 2014. 32(8): p. 795-803. 138. Kadota, T., et al., Extracellular vesicle-mediated cellular crosstalk in lung repair, remodelling and regeneration. Eur Respir Rev, 2022. 31(163). 139. Li, L. and W.B. Neaves, Normal stem cells and cancer stem cells: The niche matters. Cancer Res, 2006. 66(9): p. 4553-7. 140. Rossi, F., et al., Differences and similarities between cancer and somatic stem cells: Therapeutic implications. Stem Cell Res Ther, 2020. 11(1): p. 489. 141. Kim, W.T. and C.J. Ryu, Cancer stem cell surface markers on normal stem cells. BMB Rep, 2017. 50(6): p. 285-298. 142. Blanas, A., et al., Fut9-driven programming of colon cancer cells towards a stem cell-like state. Cancers (Basel), 2020. 12(9). 143. Jupelli, M., et al., Endogenous ifn-gamma production is induced and required for protective immunity against pulmonary chlamydial infection in neonatal mice. J Immunol, 2008. 180(6): p. 4148-55. 144. Saunders, N.A., R.J. Smith, and A.M. Jetten, Differential responsiveness of human bronchial epithelial cells, lung carcinoma cells, and bronchial fibroblasts to interferon-gamma in vitro. Am J Respir Cell Mol Biol, 1994. 11(2): p. 147-52. 145. Takami, K., et al., Interferon-gamma inhibits hepatocyte growth factor-stimulated cell proliferation of human bronchial epithelial cells: Upregulation of p27(kip1) cyclin-dependent kinase inhibitor. Am J Respir Cell Mol Biol, 2002. 26(2): p. 231-8. 146. Nava, P., et al., Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity, 2010. 32(3): p. 392-402. 147. Capaldo, C.T., et al., Ifn-gamma and tnf-alpha-induced gbp-1 inhibits epithelial cell proliferation through suppression of beta-catenin/tcf signaling. Mucosal Immunol, 2012. 5(6): p. 681-90. 148. Farin, H.F., et al., Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived ifn-gamma. J Exp Med, 2014. 211(7): p. 1393-405. 149. Jain-Vora, S., et al., Interleukin-4 alters epithelial cell differentiation and surfactant homeostasis in the postnatal mouse lung. Am J Respir Cell Mol Biol, 1997. 17(5): p. 541-51. 150. Glisinski, K.M., et al., Interleukin-13 disrupts type 2 pneumocyte stem cell activity. JCI Insight, 2020. 5(1). 151. Schubart, C., et al., Selective expression of constitutively activated stat6 in intestinal epithelial cells promotes differentiation of secretory cells and protection against helminths. Mucosal Immunol, 2019. 12(2): p. 413-424. 152. Yamada, M., N. Fujino, and M. Ichinose, Inflammatory responses in the initiation of lung repair and regeneration: Their role in stimulating lung resident stem cells. Inflamm Regen, 2016. 36: p. 15. 153. Dabbagh, K., et al., Il-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J Immunol, 1999. 162(10): p. 6233-7. 154. Gomperts, B.N., et al., Il-13 regulates cilia loss and foxj1 expression in human airway epithelium. Am J Respir Cell Mol Biol, 2007. 37(3): p. 339-46. 155. Gerovac, B.J. and N.L. Fregien, Il-13 inhibits multicilin expression and ciliogenesis via janus kinase/signal transducer and activator of transcription independently of notch cleavage. Am J Respir Cell Mol Biol, 2016. 54(4): p. 554-61. 156. Wang, X., et al., Il-4/il-13 upregulates sonic hedgehog expression to induce allergic airway epithelial remodeling. Am J Physiol Lung Cell Mol Physiol, 2020. 318(5): p. L888-L899. 157. Hong, J.Y., et al., Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through il-25 and type 2 innate lymphoid cells. J Allergy Clin Immunol, 2014. 134(2): p. 429-39. 158. Han, M., et al., Ifn-gamma blocks development of an asthma phenotype in rhinovirus-infected baby mice by inhibiting type 2 innate lymphoid cells. Am J Respir Cell Mol Biol, 2017. 56(2): p. 242-251. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85333 | - |
| dc.description.abstract | 幹細胞/前驅幹細胞 (Stem/progenitor cells) 具備有自我更新以及可分化出多種細胞型態的能力,因此於再生醫學領域中備受關注。在過往的研究中指出,肺部有一群上皮細胞表現有幹細胞的標誌物 stage-specific embryonic antigen-1 (SSEA-1), 肺SSEA-1+ 細胞 (pulmonary SSEA-1+ cells)。相較於成年 (adult) 小鼠,新生兒 (neonatal) 階段的小鼠蘊含有較多的 pulmonary SSEA-1+ cells 的細胞群體。為探究此間差異,本篇研究進一步探討 neonatal 以及 adult pulmonary SSEA-1+ cells 的差異。透過類器官 (organoid) 的建構,結果顯示 neonatal pulmonary SSEA-1+ cells 具備有較旺盛的幹細胞/前驅幹細胞特性。Neonatal pulmonary SSEA-1+ cells 可發育成結構類似於氣管 (airway)、支氣管肺泡 (bronchoalveolar) 以及肺泡 (alveolar) 的類器官,這結果也顯示 neonatal pulmonary SSEA-1+ cells 同時具備了發育氣管與肺泡上皮細胞的能力。此外研究觀察到 fibroblast growth factor 7 的作用可促進 neonatal pulmonary SSEA-1+ cells 的幹細胞/前驅幹細胞活性,增加類器官的生成並且增加肺泡類器官的發育。進一步地透過無細胞的肺葉或氣管損傷的小鼠…等實驗模式,均可觀察到 neonatal pulmonary SSEA-1+ cells 在肺組織中的貼附、發育與修補。這些結果顯示 neonatal pulmonary SSEA-1+ cells 應用於再生醫學的潛力。此外許多研究指出新生小鼠的肺部微環境偏向於第二型免疫反應,雖然此時過敏原的暴露會增加過敏性氣喘發生的機率,但第二型免疫反應對於新生兒肺部的發育知之甚少。為探討新生兒肺部發育與免疫微環境的關聯性,研究設計在neonatal pulmonary SSEA-1+ cells 發育成類器官的過程中給予 IL-4 與 IL-13 的刺激。實驗結果顯示短暫的 IL-4/IL-13 的作用可增加 neonatal pulmonary SSEA-1+ cells 幹細胞/前驅幹細胞的活性,提高類器官的生成並且發育出正常的氣管類器官。然而當 neonatal pulmonary SSEA-1+ cells 持續地受到 IL-4/IL-13 的刺激,纖毛上皮細胞的分化則會受到抑制,而粘液 (mucus) 的生成反而增加,顯示上皮細胞的發育產生失衡。進一步研究顯示,IL-4/IL-13 透過 STAT6 訊息傳遞途徑刺激 neonatal pulmonary SSEA-1+ cells 的細胞增生與細胞分化反應。因此在新生兒階段,短暫誘發的第二型免疫反應有助於肺的生長,然而當此發炎反應未受到完善的調控,反而會造成肺部上皮細胞的發育失衡。本篇研究果驗證 neonatal pulmonary SSEA-1+ cells 具備有幹細胞/前驅幹細胞的能力,而肺部免疫微環境的變化更進一步地調控 neonatal pulmonary SSEA-1+ cells的幹細胞/前驅幹細胞能力,引導著肺部上皮細胞的發育。 | zh_TW |
| dc.description.abstract | Stem/progenitor cells, because of their self-renewal and multiple cell type differentiation abilities, have good potential in regenerative medicine. We previously reported a lung cell population that expressed the stem cell marker SSEA-1 was abundant in neonatal but scarce in adult mice. The current study further characterized the stem/progenitor property of neonatal and adult mouse lung-derived SSEA-1+ cells. The results showed that the neonatal pulmonary SSEA-1+ cells exhibited enhanced ability in organoid generation compared to those of adult cells, suggesting the stem/progenitor activity is increased in the neonatal stage. The neonatal pulmonary SSEA-1+ cells generated airway-like, bronchoalveolar-like, and alveolar-like organoids that suggested the multilineage cell differentiation ability. In addition, fibroblast growth factor 7 facilitated the activity of neonatal pulmonary SSEA-1+ cells in organoid generation with increased alveolar cell differentiation. Furthermore, neonatal pulmonary SSEA-1+ cells could colonize and develop in the decellularized and injured lungs. These results demonstrated the stem/progenitor property of lung-derived neonatal-stage SSEA-1+ cells that suggested the potential for regenerative medicine. In addition, studies have revealed that the type 2 immunity is transiently increased in neonatal lungs. However, little is known about the effect of type 2 immunity on postnatal lung development. For this purpose, the neonatal lung-derived SSEA-1+ cells were cultured with IL-4/IL-13 during the organoid development. Results showed that short-term exposed the cells with IL-4/IL-13 could enhance the stem/progenitor activity for the organoid generation with normal epithelium development. However, extended IL-4/IL-13 stimulation resulted in decreased ciliated cell differentiation and increased mucus accumulation, suggesting the impairment of epithelial homeostasis. The IL-4 and IL-13 were signaled through STAT6 to mediate the cell proliferation and cell differentiation of the neonatal pulmonary SSEA-1+ cells. The results suggested that the transiently higher type 2 immunity in postnatal lungs plays a role to facilitate neonatal lung growth, but the excessive inflammation leads to abnormal epithelium development. Collectively, we observed the cell population and the stem/progenitor activity of pulmonary SSEA-1+ cells are enriched in the neonatal stages. Moreover, the IL-4/IL-13 further enhanced the stem/progenitor activity of neonatal pulmonary SSEA-1+ cells. Our results suggested the interactions of the pulmonary stem/progenitor cells with their immune environment to mediate neonatal lung growth and development. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:58:18Z (GMT). No. of bitstreams: 1 U0001-2107202215282900.pdf: 20769012 bytes, checksum: c39305cfc2a2c0505263d576d4085177 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 iii ABSTRACT v ABBREVIATIONS vii TABLE OF CONTENTS viii LIST OF FIGURES xiii I. INTRODUCTION 1 1. The respiratory system 2 2. The lung development 4 3. The stem/progenitor cells in mature lungs 7 3.1 Basal cells 8 3.2 Club cells and variant club cells 8 3.3 Type 2 and type 1 alveolar epithelial cells 9 3.4 Bronchioalveolar stem cells 9 4. Growth factors in lung development and regeneration 10 5. Lung organoids 11 6. The immunity in neonatal lungs 12 7. The SSEA-1 molecule 14 8. Previous studies and research aims 15 II. MATERIALS AND METHODS 17 1. Experimental animals 18 2. Antibodies 18 3. Preparation of pulmonary single-cell suspensions and enrichment of the SSEA-1+ cells 19 4. Trachea epithelial and alveolar cell differentiation 19 5. Organoid assay 20 6. Decellularized lung scaffold preparation and incubation with neonatal pulmonary SSEA-1+ cells 21 7. Naphthalene-induced airway injury mouse model 22 8. Flow Cytometry analysis 23 9. Library preparation, RNA sequencing, and data analysis 23 10. Quantitative polymerase chain reaction (qPCR) 24 11. Immunohistochemical staining 25 12. Immunofluorescence staining of the organoids 26 13. Statistical analysis 26 III. RESULTS 28 1. The stem cell marker SSEA-1-expressing lung epithelial cell population, the pulmonary SSEA-1+ cells 29 2. Neonatal and adult pulmonary SSEA-1+ cells shared similar lung epithelial cell-associated markers 29 3. The neonatal pulmonary SSEA-1+ cells expressed Sox2 and Sox9, the transcription factors for lung epithelium development 31 4. Transcriptome analysis revealed the developmental potential of the pulmonary SSEA-1+ cells was increased in the neonatal stage 32 5. Neonatal pulmonary SSEA-1+ cells exhibited increased stem/progenitor cell activity in organoid development 32 6. The neonatal pulmonary SSEA-1+ cells developed into organoids with multiple cell type differentiation 34 7. Neonatal lung-derived SSEA-1+ cells efficiently developed into airway-like, bronchoalveolar-like, and alveolar-like organoids 35 8. FGF7 regulated neonatal pulmonary SSEA-1+ cell activity by increasing organoid generation and AT2 cell development 36 9. Neonatal pulmonary SSEA-1+ cells self-renewed during the organoid development 38 10. The neonatal pulmonary SSEA-1+ cell-derived organoids could be induced to airway and alveolar epithelial cell differentiation 39 11. Neonatal pulmonary SSEA-1+ cells colonized and developed in the decellularized lungs 40 12. Neonatal pulmonary SSEA-1+ cells participated the tissue regeneration in mice with naphthalene-induced airway injury 41 13. The neonatal lung-derived SSEA-1+ cells exhibited greater stem/progenitor activity for the airway and alveolar epithelium development 41 14. IL-4/IL-13 and IFN-γ exerted the opposite effects on the developmental activity of neonatal pulmonary stem/progenitor cells 42 15. Extended IL-4/IL-13 stimulation induced abnormal epithelium development of the neonatal pulmonary stem/progenitor cells 44 16. IFN-γ stimulation suppressed the developmental activity of the neonatal pulmonary stem/progenitor cells 45 17. Short-term IL-4 and IL-13 exposure was sufficient to exert neonatal pulmonary stem/progenitor activity 46 18. Short-term IL-4 and IL-13 exposure maintained the normal developmental characteristic of the neonatal pulmonary stem/progenitor cells 47 19. IL-4 and IL-13 signaled through STAT6 to exert the stem/progenitor cell activity of neonatal pulmonary SSEA-1+ cells 48 20. The pulmonary stem/progenitor cell activity could be regulated by type 1 and type 2 immune responses 49 IV. DISCUSSION 51 V. CONCLUSION AND PROSPECTS 64 VI. FIGURES 67 VII. REFERENCES 129 VIII. APPENDIX 141 | |
| dc.language.iso | en | |
| dc.subject | 第二型免疫 | zh_TW |
| dc.subject | 組織修復 | zh_TW |
| dc.subject | 類器官 | zh_TW |
| dc.subject | 粘膜纖毛清除 | zh_TW |
| dc.subject | 肺前驅幹細胞 | zh_TW |
| dc.subject | mucociliary clearance | en |
| dc.subject | pulmonary stem/progenitor cells | en |
| dc.subject | organoids | en |
| dc.subject | tissue repair | en |
| dc.subject | type 2 immunity | en |
| dc.title | 探討新生肺SSEA-1+前驅幹細胞之特徵及與免疫微環境之互動關係 | zh_TW |
| dc.title | Study on the characteristics of neonatal lung-derived SSEA-1+ stem/ progenitor cells and their interaction with immune microenvironment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 朱清良(Ching-Liang Chu),林泰元(Thai-Yen Ling),曹伯年(Po-Nien Tsao),周秀慧(Shiu-Huey Chou) | |
| dc.subject.keyword | 肺前驅幹細胞,類器官,組織修復,第二型免疫,粘膜纖毛清除, | zh_TW |
| dc.subject.keyword | pulmonary stem/progenitor cells,organoids,tissue repair,type 2 immunity,mucociliary clearance, | en |
| dc.relation.page | 177 | |
| dc.identifier.doi | 10.6342/NTU202201610 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-03 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2107202215282900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 20.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
