請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85332完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林中天(Chung-Tien Lin) | |
| dc.contributor.author | Hao Lee | en |
| dc.contributor.author | 李晧 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:58:14Z | - |
| dc.date.copyright | 2022-07-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-25 | |
| dc.identifier.citation | 1. Maggs D, Miller P, Ofri R. Slatter's Fundamentals of Veterinary Ophthalmology E-Book: Elsevier Health Sciences; 2017. 2. Gelatt KN, Gilger BC, Kern TJ. Veterinary ophthalmology: John Wiley & Sons; 2012. 3. Barritault D, Gilbert-Sirieix M, Rice KL, Siñeriz F, Papy-Garcia D, Baudouin C, et al. RGTA® or ReGeneraTing Agents mimic heparan sulfate in regenerative medicine: from concept to curing patients. Glycoconjugate Journal. 2017;34(3):325-38. 4. Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Progress in Retinal Eye Research. 2015;49:17-45. 5. Maggs DJ. Slatter's fundamentals of veterinary ophthalmology / David J. Maggs, Paul E. Miller, Ron Ofri. 6th edition. ed. Miller PE, Ofri R, editors. St. Louis, Missouri: Elsevier; 2018. 6. Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP. Amniotic membrane transplantation in the human eye. Dtsch Arztebl International. 2011;108(14):243-8. 7. Malhotra C, Jain AK. Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World Journal of Transplantation. 2014;4(2):111-21. 8. Boudreau N, Werb Z, Bissell MJ. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proceedings of the National Academy of Sciences. 1996;93(8):3509-13. 9. Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SCG. Suppression of interleukin 1α and interleukin 1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. British Journal of Ophthalmology. 2001;85(4):444-9. 10. Hao Y, Ma DH-K, Hwang DG, Kim W-S, Zhang F. Identification of Antiangiogenic and Antiinflammatory Proteins in Human Amniotic Membrane. Cornea. 2000;19(3):348-52. 11. Galask RP, Snyder IS. Antimicrobial factors in amniotic fluid. American Journal of Obstetrics and Gynecology. 1970;106(1):59-65. 12. Kjaergaard N, Hein M, Hyttel L, Helmig RB, Schønheyder HC, Uldbjerg N, et al. Antibacterial properties of human amnion and chorion in vitro. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2001;94(2):224-9. 13. Choi JA, Jin H-J, Jung S, Yang E, Choi J-S, Chung S-H, et al. Effects of amniotic membrane suspension in human corneal wound healing in vitro. Molecular Vision. 2009;15:2230. 14. Seitz B, Bischoff M, Stachon T, Huber M, Zawada M, Eichler M, et al. Growth factor and interleukin concentrations in amniotic membrane suspension (AMS). Investigative Ophthalmology & Visual Science. 2014;55(13):6292-. 15. Maquart F, Monboisse J. Extracellular matrix and wound healing. Pathologie Biologie. 2014;62(2):91-5. 16. Zieske JD. Extracellular matrix and wound healing. Current Opinion in Ophthalmology. 2001;12(4):237-41. 17. Brignole-Baudouin F, Warnet J, Barritault D, Baudouin C. RGTA-based matrix therapy in severe experimental corneal lesions: safety and efficacy studies. Journal Français d'Ophtalmologie. 2013;36(9):740-7. 18. Cejkova J, Olmiere C, Cejka C, Trosan P, Holan V. The healing of alkali-injured cornea is stimulated by a novel matrix regenerating agent (RGTA, CACICOL20): a biopolymer mimicking heparan sulfates reducing proteolytic, oxidative and nitrosative damage. Histology and Histopathology. 2014;29(4):457-78. 19. Stepp MA, Zieske JD, Trinkaus-Randall V, Kyne BM, Pal-Ghosh S, Tadvalkar G, et al. Wounding the cornea to learn how it heals. Experimental Eye Research. 2014;121:178-93. 20. Gipson IK, Kiorpes TC. Epithelial sheet movement: protein and glycoprotein synthesis. Developmental Biology. 1982;92(1):259-62. 21. Anderson C, Zhou Q, Wang S. An alkali-burn injury model of corneal neovascularization in the mouse. Journal of Visualized Experiments. 2014(86):e51159. 22. Silva ML, Piso DYT, Ribeiro AP, Laus JL. Topical 1% Nalbuphine on corneal sensivity and epitheilization after experimental lamellar keratectomy in rabbits. Ciência Rural. 2012;42:679-84. 23. Yoon K-C, Heo H, Kang I-S, Lee M-C, Kim K-K, Park S-H, et al. Effect of topical cyclosporin A on herpetic stromal keratitis in a mouse model. Cornea. 2008;27(4):454-60. 24. Famose F. Assessment of the use of spectral domain optical coherence tomography (SD‐OCT) for evaluation of the healthy and pathological cornea in dogs and cats. Veterinary Ophthalmology. 2014;17(1):12-22. 25. Abd Ghafar N, Ker-Woon C, Hui CK, Yusof YAM, Ngah WZW. Acacia honey accelerates in vitro corneal ulcer wound healing model. BMC Complementary and Alternative Medicine. 2016;16(1):1-11. 26. Mudaliar U, Tamgadge A, Tamgadge S, Pereira T, Dhouskar S, Rajhans S, et al. Immunohistochemical Expression of Myofibroblasts Using Alpha-smooth Muscle Actin (SMA) to Assess the Aggressive Potential of Various Clinical Subtypes of Ameloblastoma. Journal of Microscopy and Ultrastructure. 2019;7(3):130-5. 27. Kivanany PB, Grose KC, Tippani M, Su S, Petroll WM. Assessment of corneal stromal remodeling and regeneration after photorefractive keratectomy. Scientific Reports. 2018;8(1):1-14. 28. Hutcheon AE, Sippel KC, Zieske JD. Examination of the restoration of epithelial barrier function following superficial keratectomy. Experimental Eye Research. 2007;84(1):32-8. 29. Zheng K, Huang H, Peng K, Cai J, Jhanji V, Chen H. Change of optical intensity during healing process of corneal wound on anterior segment optical coherence tomography. Scientific Reports. 2016;6(1):1-6. 30. Medeiros CS, Marino GK, Santhiago MR, Wilson SE. The corneal basement membranes and stromal fibrosis. Investigative Ophthalmology & Visual Science. 2018;59(10):4044-53. 31. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. The American Journal of Pathology. 2012;180(4):1340-55. 32. Singh V, Jaini R, Torricelli AA, Santhiago MR, Singh N, Ambati BK, et al. TGFβ and PDGF-B signaling blockade inhibits myofibroblast development from both bone marrow-derived and keratocyte-derived precursor cells in vivo. Experimental Eye Research. 2014;121:35-40. 33. Barbosa FL, Chaurasia SS, Cutler A, Asosingh K, Kaur H, de Medeiros FW, et al. Corneal myofibroblast generation from bone marrow-derived cells. Experimental Eye Research. 2010;91(1):92-6. 34. Wilson SE. Corneal myofibroblasts and fibrosis. Experimental Eye Research. 2020;201:108272. 35. Powell D, Mifflin R, Valentich J, Crowe S, Saada J, West A. Myofibroblasts. I. Paracrine cells important in health and disease. American Journal of Physiology-Cell Physiology. 1999;277(1):C1-C19. 36. Boström H, Willetts K, Pekny M, Levéen P, Lindahl P, Hedstrand H, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell. 1996;85(6):863-73. 37. Petroll WM, Miron-Mendoza M. Mechanical interactions and crosstalk between corneal keratocytes and the extracellular matrix. Experimental Eye Research. 2015;133:49-57. 38. Petroll WM, Lakshman N. Fibroblastic transformation of corneal keratocytes by rac inhibition is modulated by extracellular matrix structure and stiffness. Journal of Functional Biomaterials. 2015;6(2):222-40. 39. Ruiz-Zapata AM, Heinz A, Kerkhof MH, van de Westerlo-van Rijt C, Schmelzer CE, Stoop R, et al. Extracellular Matrix Stiffness and Composition Regulate the Myofibroblast Differentiation of Vaginal Fibroblasts. International Journal of Molecular Sciences. 2020;21(13):4762. 40. Murri MS, Moshirfar M, Birdsong OC, Ronquillo YC, Ding Y, Hoopes PC. Amniotic membrane extract and eye drops: a review of literature and clinical application. Clinical Ophthalmology (Auckland, NZ). 2018;12:1105. 41. Guo Q, Hao J, Yang Q, Guan L, Ouyang S, Wang J. A comparison of the effectiveness between amniotic membrane homogenate and transplanted amniotic membrane in healing corneal damage in a rabbit model. Acta Ophthalmologica. 2011;89(4):e315-e9. 42. Choi JA, Choi J-S, Joo C-K. Effects of amniotic membrane suspension in the rat alkali burn model. Molecular Vision. 2011;17:404. 43. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Reports on Progress in Physics. 2003;66(2):239. 44. Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Survey of Ophthalmology. 1998;43(3):245-69. 45. Kamil S, Mohan RR. Corneal stromal wound healing: major regulators and therapeutic targets. The Ocular Surface. 2021;19:290-306. 46. Marino GK, Santhiago MR, Santhanam A, Torricelli AA, Wilson SE. Regeneration of defective epithelial basement membrane and restoration of corneal transparency after photorefractive keratectomy. Journal of Refractive Surgery. 2017;33(5):337-46. 47. Hatami-Marbini H, Etebu E. Hydration dependent biomechanical properties of the corneal stroma. Experimental Eye Research. 2013;116:47-54. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85332 | - |
| dc.description.abstract | 角膜潰瘍是一個在獸醫臨床眼科之中非常常見的疾病,除了會造成病患不適之外,角膜潰瘍也可能會導致嚴重的併發症。嚴重的角膜基質潰瘍會需要手術的介入,來幫助受傷的角膜恢復結構的穩定性以及促進角膜的癒合過程。然而,如果病患有生理方面的異常無法進行麻醉手術,或是有經費方面的考量的情況,就會需要以積極的內科點眼藥水的方式治療。此研究的目標是希望可以調查在使用羊膜懸浮點眼劑以及細胞外基質替代物,在治療手術誘導的大鼠深層角膜潰瘍動物模式的治療效果。 有24隻老鼠參與實驗並且分成四組,分別為控制組(生理食鹽水一天三次,共六隻)、EyeQ組(羊膜萃取物懸浮液一天三次,共六隻)、EMS組(細胞外基質替代物每兩天一次,共六隻)以及EyeQ+EMS組(羊膜萃取物懸浮液一天三次;細胞外基質替代物每兩天一次,共六隻)。實驗使用角膜層切術在大鼠的角膜上製造出深層潰瘍。角膜基質的癒合過程會藉由臨床的檢查、光學同調斷層掃描、組織病理學以及免疫組織化學染色的方式來評估。 各組之間在手術後的24與48小時的時間內,角膜上皮的癒合百分比並沒有出現顯著的差異。並且角膜基質的厚度在術後的第三天與第七天,各組也沒有出現統計上的顯著差異。然而在術後第七天時,在各組之間的角膜混濁度的評估以及肌纖維母細胞的數量,會發現在EMS組以及EyeQ+EMS組別中與控制組相比有顯著的差異存在。 此研究的結果發現,羊膜萃取物懸浮液與細胞外基質替代物都可以有效的幫助角膜基質的癒合過程。在使用細胞外基質替代物的角膜中,可以觀察到較為顯著的角膜混濁以及較大量的肌纖維母細胞浸潤在角膜基質內。未來需要更多的後續研究來了解,這些眼藥水在臨床的環境下治療犬貓的深層角膜潰瘍時的治療效果。 | zh_TW |
| dc.description.abstract | Corneal ulcer is a common disease in veterinary ophthalmology, which not only causes the patient’s discomfort, but also lead to serious complications. Severe corneal stromal ulcer is often required surgical management to restore corneal structural stability and promote healing process. However, if patient is unable to undergo general anesthesia due to physiological factors or financial restriction, vigorous medical therapy is an alternative. The aim of our study is to investigate the therapeutic response of amniotic membrane suspension and extracellular matrix substitute in surgically induced rat deep stromal ulcer model. Twenty-four rats were divided into 4 groups: control group (topical normal saline, tid, n=6); EyeQ group (topical amniotic membrane suspension, tid, n=6); EMS group (topical extracellular matrix substitute, q2d, n=6); EyeQ+EMS group (topical amniotic membrane suspension, tid; topical extracellular matrix substitute, q2d, n=6). Lamellar keratectomy was used to induce deep stromal ulcer in the corneas. The evaluation of stromal wound healing process was performed by clinical ophthalmic examinations, spectral domain optical coherence tomography (SD-OCT), histopathology, and immunohistochemistry of markers of corneal wound healing. There was no significant difference in epithelial healing percentage in both 24 and 48 hours postoperatively between groups (P>0.05). There was no significant difference in stroma thickness between groups (P>0.05) at both day 3 and 7. The corneal opacity grading scores and myofibroblast counts in EMS and EyeQ+EMS groups were significantly higher than those in the control group (P<0.05) at day 7. The results from our study showed both amniotic membrane suspension and extracellular matrix substitute could improve the corneal stromal healing process. Significant corneal opaque and myofibroblast infiltration were found in the eyes treated with extracellular matrix substitute, which may be related to its therapeutic mechanism. Further study is required to understand these topical treatments to canine and feline deep corneal stromal ulcer under clinical setting. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:58:14Z (GMT). No. of bitstreams: 1 U0001-2307202213194000.pdf: 12488880 bytes, checksum: bd90ad128aea6c13e4fab0944b67f1d5 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Table of contents TABLE OF CONTENTS 8 LIST OF FIGURES 10 LIST OF TABLES 11 TABLE OF ABBREVIATIONS 11 INTRODUCTION 12 1. BACKGROUND 12 2. THE PURPOSES OF THIS STUDY 13 LITERATURE REVIEW 14 1. CORNEAL ULCERATION IN VETERINARY CLINICAL PRACTICE 14 2. MANAGEMENTS OF CORNEAL STROMAL ULCERATION IN VETERINARY PRACTICES 15 3. TOPICAL TREATMENTS PROMOTING WOUND HEALING OF STROMAL CORNEAL WOUND 16 3.1 Amniotic membrane suspension eye drops 16 3.2 Extracellular matrix substitute 18 4. EXPERIMENTAL ANIMAL MODELS OF CORNEAL WOUNDS/DEFECTS 21 MATERIAL AND METHODS 23 1. EXPERIMENTAL ANIMAL 23 2. PILOT STUDIES 23 2.1 Establishment and monitoring of deep stromal ulcer animal model 23 2.1.1 Experimental groups 23 2.1.2 The establishment of deep stromal ulcer animal model 23 2.1.3 Monitoring of the deep stromal ulcer animal model 25 2.2 Preliminary investigation of the amniotic membrane suspension and extracellular matrix substitute on deep stromal ulcer animal model 26 2.2.1 Experimental groups and procedures 26 2.2.2 Evaluations 27 3. INVESTIGATION OF AMNIOTIC MEMBRANE SUSPENSION AND EXTRACELLULAR MATRIX SUBSTITUTE EFFECT ON DEEP CORNEAL STROMAL ULCER 28 3.1 Experimental groups 28 3.2 Clinical evaluation 29 3.3 Optical coherence tomography (OCT) analysis 30 3.4 Histopathological analysis 31 3.5 Statistical analysis 32 RESULTS 33 1. PILOT STUDIES 33 1.1 The establishment of deep stromal ulcer rat animal model 33 1.1.1 Corneal opacity grading and morphological change of cornea 33 1.1.2 OCT cross-sectional images analysis 37 1.2 Preliminary investigation of the effects of the topical agents in the deep stromal ulcer animal model 41 1.2.1 Corneal opacity grading 41 1.2.2 Stromal thickness measurements 42 2. INVESTIGATION OF AMNIOTIC MEMBRANE SUSPENSION AND EXTRACELLULAR MATRIX SUBSTITUTE EFFECT ON DEEP CORNEAL STROMAL ULCER 43 2.1 Corneal opacity grading 43 2.2 Epithelial healing percentage 46 2.3 Corneal epithelium thickness 46 2.4 Corneal stroma thickness 47 2.5 OCT cross-sectional images analysis 49 2.6 Histopathology and immunohistochemistry 53 2.6.1 Three days after the surgery 53 2.6.2 Seven days after the surgery 54 2.7 Myofibroblast counts 65 2.8 Correlation between OCT and histology 66 DISCUSSIONS 67 1. DEEP STROMAL ULCER ANIMAL MODEL IN RATS 67 2. CORNEAL OPACITY AND STROMAL HEALING PROCESS 68 3. THE ROLES OF MYOFIBROBLAST AND EXTRACELLULAR MATRIX IN CORNEAL STROMAL HEALING PROCESS 71 4. AMNIOTIC MEMBRANE SUSPENSION AND STROMAL HEALING PROCESS 73 5. THE CORRELATION BETWEEN OCT AND HISTOLOGIC EXAMINATION 74 6. THE ROLE OF CORNEAL NEOVASCULARIZATION IN CORNEAL STROMAL HEALING 76 7. CORNEAL OPACITY AND VISION AFTER DEEP CORNEAL STROMAL ULCERATION 78 8. LIMITATIONS OF THE STUDY 80 CONCLUSION 82 REFERENCES 84 | |
| dc.language.iso | en | |
| dc.subject | 細胞外基質替代物 | zh_TW |
| dc.subject | 羊膜萃取物懸浮點眼劑 | zh_TW |
| dc.subject | 光學同調斷層掃描 | zh_TW |
| dc.subject | 肌纖維母細胞 | zh_TW |
| dc.subject | 角膜基質潰瘍 | zh_TW |
| dc.subject | extracellular matrix substitute | en |
| dc.subject | stromal ulcer | en |
| dc.subject | OCT | en |
| dc.subject | myofibroblast | en |
| dc.subject | amniotic membrane suspension | en |
| dc.title | 研究⽺膜萃取物懸浮點眼劑以及細胞外基質替代物對於⼤⿏實驗誘發眼⾓膜傷⼝的癒合效果 | zh_TW |
| dc.title | Investigation of topical amniotic membrane extract suspension and extracellular matrix substitute eyedrops on corneal wound healing in an induced rat corneal wounding model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃威翔(Wei-Hsiang Huang),林荀龍(Shiun-Long Lin),孫逸珍(Yi-Chen Sun) | |
| dc.subject.keyword | 角膜基質潰瘍,光學同調斷層掃描,肌纖維母細胞,羊膜萃取物懸浮點眼劑,細胞外基質替代物, | zh_TW |
| dc.subject.keyword | stromal ulcer,OCT,myofibroblast,amniotic membrane suspension,extracellular matrix substitute, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202201658 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-27 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-29 | - |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2307202213194000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
