請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85316完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李奕霈(Yi-Pei Li) | |
| dc.contributor.author | Tsai-Ho Li | en |
| dc.contributor.author | 黎采合 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:57:11Z | - |
| dc.date.copyright | 2022-08-02 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-27 | |
| dc.identifier.citation | (1) de Oliveira, L. P.; Hudebine, D.; Guillaume, D.; Verstraete, J. J. A Review of Kinetic Modeling Methodologies for Complex Processes. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 2016, 71 (3), 45. https://doi.org/10.2516/ogst/2016011. (2) Wu, H.; Devaraj, N. K. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. Acc. Chem. Res. 2018, 51 (5), 1249–1259. https://doi.org/10.1021/acs.accounts.8b00062. (3) Feng, R.; Smith, J. A.; Moeller, K. D. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization. Acc. Chem. Res. 2017, 50 (9), 2346–2352. https://doi.org/10.1021/acs.accounts.7b00287. (4) Stegelmann, C.; Andreasen, A.; Campbell, C. T. Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates. Journal of the American Chemical Society 2009, 131 (23), 8077–8082. https://doi.org/10.1021/ja9000097. (5) Campbell, C. T. The Degree of Rate Control: A Powerful Tool for Catalysis Research. ACS Catalysis 2017, 7 (4), 2770–2779. https://doi.org/10.1021/acscatal.7b00115. (6) Mao, Z.; Campbell, C. T. Apparent Activation Energies in Complex Reaction Mechanisms: A Simple Relationship via Degrees of Rate Control. ACS Catalysis 2019, 9 (10), 9465–9473. https://doi.org/10.1021/acscatal.9b02761. (7) Mao, Z.; Campbell, C. T. Kinetic Isotope Effects: Interpretation and Prediction Using Degrees of Rate Control. ACS Catalysis 2020, 10 (7), 4181–4192. https://doi.org/10.1021/acscatal.9b05637. (8) Chemkin-Pro 15112; Reaction Design: San Diego, 2011. (9) Goodwin, D. G.; Speth, R. L.; Moffat, H. K.; Weber, B. W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, 2021. https://doi.org/10.5281/zenodo.4527812. (10) Linic, S.; Barteau, M. A. Construction of a Reaction Coordinate and a Microkinetic Model for Ethylene Epoxidation on Silver from DFT Calculations and Surface Science Experiments. Journal of Catalysis 2003, 214 (2), 200–212. https://doi.org/10.1016/S0021-9517(02)00156-2. (11) Sutton, J. E.; Panagiotopoulou, P.; Verykios, X. E.; Vlachos, D. G. Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. The Journal of Physical Chemistry C 2013, 117 (9), 4691–4706. https://doi.org/10.1021/jp312593u. (12) Zhao, Z.-J.; Li, Z.; Cui, Y.; Zhu, H.; Schneider, W. F.; Delgass, W. N.; Ribeiro, F.; Greeley, J. Importance of Metal-Oxide Interfaces in Heterogeneous Catalysis: A Combined DFT, Microkinetic, and Experimental Study of Water-Gas Shift on Au/MgO. Journal of Catalysis 2017, 345, 157–169. https://doi.org/10.1016/j.jcat.2016.11.008. (13) Cooper, G. J. The Numerical Solution of Stiff Differential Equations. FEBS Letters 1969, 2, S22–S29. https://doi.org/10.1016/0014-5793(69)80072-4. (14) Wessel, W. W.; Tietema, A. Calculating Gross N Transformation Rates of 15N Pool Dilution Experiments with Acid Forest Litter: Analytical and Numerical Approaches. Soil Biology and Biochemistry 1992, 24 (10), 931–942. https://doi.org/10.1016/0038-0717(92)90020-X. (15) Shieh, D. S.-S.; Chang, Y.; Carmichael, G. R. The Evaluation of Numerical Techniques for Solution of Stiff Ordinary Differential Equations Arising from Chemical Kinetic Problems. Environmental Software 1988, 3 (1), 28–38. https://doi.org/10.1016/0266-9838(88)90006-8. (16) Mott, D. R.; Oran, E. S.; van Leer, B. A Quasi-Steady-State Solver for the Stiff Ordinary Differential Equations of Reaction Kinetics. Journal of Computational Physics 2000, 164 (2), 407–428. https://doi.org/10.1006/jcph.2000.6605. (17) Ji, W.; Qiu, W.; Shi, Z.; Pan, S.; Deng, S. Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics. J. Phys. Chem. A 2021, 125 (36), 8098–8106. https://doi.org/10.1021/acs.jpca.1c05102. (18) Laidler, K. J.; King, M. C. Development of Transition-State Theory. J. Phys. Chem. 1983, 87 (15), 2657–2664. https://doi.org/10.1021/j100238a002. (19) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current Status of Transition-State Theory. J. Phys. Chem. 1996, 100 (31), 12771–12800. https://doi.org/10.1021/jp953748q. (20) Ptáček, P.; Šoukal, F.; Opravil, T. Introduction to the Transition State Theory. In Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of this Instanton; Ptáček, P., Opravil, T., Šoukal, F., Eds.; IntechOpen: Rijeka, 2018. https://doi.org/10.5772/intechopen.78705. (21) Christiansen, J. A. The Elucidation of Reaction Mechanisms by the Method of Intermediates in Quasi-Stationary Concentrations. Advances in Catalysis 1953, 5, 311–353. (22) Kozuch, S.; Shaik, S. Kinetic-Quantum Chemical Model for Catalytic Cycles: The Haber-Bosch Process and the Effect of Reagent Concentration. J Phys Chem A 2008, 112 (26), 6032–6041. https://doi.org/10.1021/jp8004772. (23) Meir, R.; Kozuch, S.; Uhe, A.; Shaik, S. How Can Theory Predict the Selectivity of Palladium-Catalyzed Cross-Coupling of Pristine Aromatic Molecules? Chem-Eur J 2011, 17 (27), 7623–7631. https://doi.org/10.1002/chem.201002724. (24) Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles? The Energetic Span Model. Accounts Chem Res 2011, 44 (2), 101–110. https://doi.org/10.1021/ar1000956. (25) Kozuch, S. A Refinement of Everyday Thinking: The Energetic Span Model for Kinetic Assessment of Catalytic Cycles. Wires Comput Mol Sci 2012, 2 (5), 795–815. https://doi.org/10.1002/wcms.1100 (26) Kozuch, S. Steady State Kinetics of Any Catalytic Network: Graph Theory, the Energy Span Model, the Analogy between Catalysis and Electrical Circuits, and the Meaning of “Mechanism.” Acs Catal 2015, 5 (9), 5242–5255. https://doi.org/10.1021/acscatal.5b00694. (27) Leiva, H. A Generalization of Cramer’s Rule. ALAMT 2015, 05 (04), 156–166. https://doi.org/10.4236/alamt.2015.54016. (28) Kozuch, S.; Lee, S. E.; Shaik, S. Theoretical Analysis of the Catalytic Cycle of a Nickel Cross-Coupling Process: Application of the Energetic Span Model. Organometallics 2009, 28 (5), 1303–1308. https://doi.org/10.1021/om800772g. (29) Baranski, A. On the Usefulness of Campbell’s Concept of the Rate-Determining Step. Solid State Ionics 1999, 117 (1–2), 123–128. https://doi.org/10.1016/S0167-2738(98)00255-0. (30) Gao, X.; Jang, J.; Nagase, S. Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. The Journal of Physical Chemistry C 2010, 114 (2), 832–842. https://doi.org/10.1021/jp909284g. (31) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Materials 2007, 6 (3), 183–191. https://doi.org/10.1038/nmat1849. (32) Geim, A. K. Graphene: Status and Prospects. Science 2009, 324 (5934), 1530–1534. https://doi.org/10.1126/science.1158877. (33) Service, R. F. Materials Science. Carbon Sheets an Atom Thick Give Rise to Graphene Dreams. Science 2009, 324 (5929), 875–877. https://doi.org/10.1126/science.324_875. (34) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. Analysis of the Concerted Metalation-Deprotonation Mechanism in Palladium-Catalyzed Direct Arylation Across a Broad Range of Aromatic Substrates. Journal of the American Chemical Society 2008, 130 (33), 10848–10849. https://doi.org/10.1021/ja802533u. (35) Long, A. E.; Merchant, S. S.; Vandeputte, A. G.; Carstensen, H.-H.; Vervust, A. J.; Marin, G. B.; Van Geem, K. M.; Green, W. H. Pressure Dependent Kinetic Analysis of Pathways to Naphthalene from Cyclopentadienyl Recombination. Combustion and Flame 2018, 187, 247–256. https://doi.org/10.1016/j.combustflame.2017.09.008. (36) Thorsen, W. A.; Cope, W. G.; Shea, D. Bioavailability of PAHs: Effects of Soot Carbon and PAH Source. Environ. Sci. Technol. 2004, 38 (7), 2029–2037. https://doi.org/10.1021/es0306056. (37) Liu, G.; Niu, Z.; Van Niekerk, D.; Xue, J.; Zheng, L. Polycyclic Aromatic Hydrocarbons (PAHs) from Coal Combustion: Emissions, Analysis, and Toxicology. Rev Environ Contam Toxicol 2008, 192, 1–28. https://doi.org/10.1007/978-0-387-71724-1_1. (38) Kim, K.-H.; Jahan, S. A.; Kabir, E.; Brown, R. J. C. A Review of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) and Their Human Health Effects. Environment International 2013, 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019. (39) Friderichsen, A. V.; Shin, E.-J.; Evans, R. J.; Nimlos, M. R.; Dayton, D. C.; Ellison, G. B. The Pyrolysis of Anisole (C6H5OCH3) Using a Hyperthermal Nozzle. Fuel 2001, 80 (12), 1747–1755. https://doi.org/10.1016/S0016-2361(01)00059-X. (40) Y, M.; T, S.; C, O.; N, F. Investigation of a New Pathway Forming Naphthalene by the Recombination Reaction of Cyclopentadienyl Radicals. Chemistry Letters 2003, 32 (12), 1112–1113. https://doi.org/10.1246/cl.2003.1112. (41) Djokic, M.; Carstensen, H.-H.; Van Geem, K. M.; Marin, G. B. The Thermal Decomposition of 2,5-Dimethylfuran. Proceedings of the Combustion Institute 2013, 34 (1), 251–258. https://doi.org/10.1016/j.proci.2012.05.066. (42) Mebel, A. M.; Kislov, V. V. Can the C5H5 + C5H5 → C10H10 → C10H9 + H/C10H8 + H2 Reaction Produce Naphthalene? An Ab Initio/RRKM Study. J. Phys. Chem. A 2009, 113 (36), 9825–9833. https://doi.org/10.1021/jp905931j. (43) Dean, A. M. Detailed Kinetic Modeling of Autocatalysis in Methane Pyrolysis. J. Phys. Chem. 1990, 94 (4), 1432–1439. https://doi.org/10.1021/j100367a043. (44) Cavallotti, C.; Polino, D.; Frassoldati, A.; Ranzi, E. Analysis of Some Reaction Pathways Active during Cyclopentadiene Pyrolysis. J. Phys. Chem. A 2012, 116 (13), 3313–3324. https://doi.org/10.1021/jp212151p. (45) Cavallotti, C.; Polino, D. On the Kinetics of the C5H5+C5H5 Reaction. Proceedings of the Combustion Institute 2013, 34 (1), 557–564. https://doi.org/10.1016/j.proci.2012.05.097. (46) Djokic, M. R.; Van Geem, K. M.; Cavallotti, C.; Frassoldati, A.; Ranzi, E.; Marin, G. B. An Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis: First Growth of Polycyclic Aromatic Hydrocarbons. Combustion and Flame 2014, 161 (11), 2739–2751. https://doi.org/10.1016/j.combustflame.2014.04.013. (47) Vervust, A. J.; Djokic, M. R.; Merchant, S. S.; Carstensen, H.-H.; Long, A. E.; Marin, G. B.; Green, W. H.; Van Geem, K. M. Detailed Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis in the Presence of Ethene. Energy Fuels 2018, 32 (3), 3920–3934. https://doi.org/10.1021/acs.energyfuels.7b03560. (48) Li, Y.-P.; Head-Gordon, M.; Bell, A. T. Computational Study of p -Xylene Synthesis from Ethylene and 2,5-Dimethylfuran Catalyzed by H-BEA. J. Phys. Chem. C 2014, 118 (38), 22090–22095. https://doi.org/10.1021/jp506664c. (49) Williams, C. L.; Chang, C.-C.; Do, P.; Nikbin, N.; Caratzoulas, S.; Vlachos, D. G.; Lobo, R. F.; Fan, W.; Dauenhauer, P. J. Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene. ACS Catal. 2012, 2 (6), 935–939. https://doi.org/10.1021/cs300011a. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85316 | - |
| dc.description.abstract | 估計反應速率在動力學建模中很重要,而動力學建模是各種化學領域的基礎,例如開發新材料和優化反應條件以最大化產率或改進合成策略。傳統上,可以在不同條件下進行動力學實驗來推導速率定律式。然而,在實際情況下,這種方法往往耗時,且經驗速率定律式的普遍性經常受到限制,因為它通常將異構體和反應混為一談,因此不能準確地描述複雜的反應體系。為了解決這個問題,我們開發了一種分析方法來解決複雜反應網絡的反應速率。該方法通過推導能量速率表達式(energetic rate expression, ERE)將理論計算和實驗聯繫起來,該表達式通過假設中間體的穩態來提供任何反應網絡的動力學信息。如果過渡態理論適用,任何反應網絡的反應速率都可以通過其在自由能面的分佈來計算反應速率。若將ERE應用於靈敏度分析,可以預測速率控制(degree of rate control, DRC)的排序、以判定速率決定態,有助於理解反應機制並有助於反應器設計。在本研究中,給出了ERE的推導以及ERE分析複雜反應網路的應用實例,且研究結果顯示我們的模型與現有方法有很好的吻合。 | zh_TW |
| dc.description.abstract | Estimating reaction rate is important in kinetic modeling, and kinetic modeling is fundamental in various chemic al fields such as developing new materials and optimizing reaction conditions to maximize the yield or improve the synthesis strategy. In principle, kinetic experiments can be carried out under different conditions to derive the rate law. However, in practice, this approach is time-consuming and the generalizability of an empirical rate law is usually limited because it usually lumps important isomers and reactions, and hence cannot always accurately describe a complex reaction system. To address this issue, we developed an analytical approach to solve the reaction rate of a complex reaction network. This method connects theoretical computations and experiments by deriving an energetic rate expression (ERE), which provides kinetic information of any reaction network by assuming steady state for the intermediates. Using ERE, the reaction rate of any reaction network can be estimated by its free energy profile if the transition state theory is applicable. When ERE is applied to the sensitivity analysis, it is possible to predict the general degree of rate control (DRC) and the critical state of the reaction network, which helps to understand the mechanism and aids in reactor design. In this work, the derivation of ERE is given along with practical examples of application of ERE in complex reaction analysis and the results show that our model agrees well with existing methods. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:57:11Z (GMT). No. of bitstreams: 1 U0001-2707202215521500.pdf: 1413848 bytes, checksum: 65522bd72289ca0f11bfc9fdbd0a7f65 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iii Contents v Scheme Index vii Figure Index ix Table Index x 1. Introduction 1 2. Methods 5 2.1 Transition State Theory (TST) 5 2.2 Rate Expression: Linear Reaction 6 2.3 Rate Expression: Cyclic Reaction 10 2.4 Rate Expression: Complex Reaction 12 2.5 Sensitivity Analysis: Degree of Rate Control 14 3. Results and Discussions 18 3.1 Linear Reaction: De-epoxidation of Graphene Oxide30 18 3.2 Cyclic Reaction: Palladium-catalyzed Cross-coupling of Benzene and Indole23 22 3.3 Complex Reaction: Cyclopentadiene to Naphthalene and Other Polycyclic Aromatic Hydrocarbon Precursors35 26 3.4 Concentration Effect: p‐Xylene Synthesis from Ethylene and 2,5- Dimethylfuran Catalyzed by H‐BEA48 31 4. Conclusion 33 5. References 36 6. Supporting information 44 | |
| dc.language.iso | en | |
| dc.subject | 反應網絡 | zh_TW |
| dc.subject | 反應速率 | zh_TW |
| dc.subject | 動力學模型 | zh_TW |
| dc.subject | 速率決定態 | zh_TW |
| dc.subject | 靈敏度分析 | zh_TW |
| dc.subject | reaction network | en |
| dc.subject | kinetic modeling | en |
| dc.subject | reaction rate | en |
| dc.subject | sensitivity analysis | en |
| dc.subject | rate-determinig state | en |
| dc.title | 以解析方法推導複雜反應網路之速率表達式 | zh_TW |
| dc.title | An Analytical Approach for Deriving Rate Expressions of Complex Reaction Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐振哲(Cheng-Che Hsu),林立強(Li-Chiang Lin) | |
| dc.subject.keyword | 動力學模型,反應速率,靈敏度分析,速率決定態,反應網絡, | zh_TW |
| dc.subject.keyword | kinetic modeling,reaction rate,sensitivity analysis,rate-determinig state,reaction network, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU202201790 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-02 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202215521500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
