Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬(Ruey-Fen Liou)
dc.contributor.authorXiao-Xuan Chengen
dc.contributor.author成孝軒zh_TW
dc.date.accessioned2023-03-19T22:56:52Z-
dc.date.copyright2022-07-29
dc.date.issued2022
dc.date.submitted2022-07-28
dc.identifier.citation陳佳君,2019 探討疫病菌OPEL同源性基因在植物基礎防禦反應的角色。國立臺灣大學 植物病理與微生物學系碩士學位論文。 顏豪志,2001 疫病菌分泌性蛋白質opel之分子選殖與特性研究。國立臺灣大學 植物病理與微生物學系碩士學位論文。 Attard, A., Gourgues, M., Callemeyn-Torre, N., and Keller, H. 2010. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol. 187:449-460. Bar, M., Sharfman, M., Ron, M., and Avni, A. 2010. BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J. 63:791-800. Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363. Baulcombe, D. C. 2015. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. Curr. Opin. Plant. Biol. 26:141-146. Boavida, L. C., Qin, P., Broz, M., Becker, J. D., and McCormick, S. 2013. Arabidopsis tetraspanins are confined to discrete expression domains and cell types in reproductive tissues and form homo- and heterodimers when expressed in yeast. Plant Physiol. 163:696-712. Boller, T., and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406. Brand, L., Horler, M., Nuesch, E., Vassalli, S., Barrell, P., Yang, W., Jefferson, R. A., Grossniklaus, U., and Curtis, M. D. 2006. A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol. 141:1194-1204. Bravo Ruiz, G., Di Pietro, A., and Roncero, M. I. 2016. Combined action of the major secreted exo- and endopolygalacturonases is required for full virulence of Fusarium oxysporum. Mol. Plant Pathol. 17:339-353. Brito, N., Espino, J. J., and González, C. 2006. The endo-β-1, 4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol. Plant Microbe Interact. 19:25-32. Brule, D., Villano, C., Davies, L. J., Trda, L., Claverie, J., Heloir, M. C., Chiltz, A., Adrian, M., Darblade, B., Tornero, P., Stransfeld, L., Boutrot, F., Zipfel, C., Dry, I. B., and Poinssot, B. 2019. The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnol. J. 17:812-825. Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nürnberger, T. 2002. Pep‐13, a plant defense‐inducing pathogen‐associated pattern from Phytophthora transglutaminases. EMBO J. 21:6681-6688. Brutus, A., Sicilia, F., Macone, A., Cervone, F., and De Lorenzo, G. 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. PNAS 107:9452-9457. Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C., and Kehr, J. 2008. Identification and characterization of small RNAs from the phloem of Brassica napus. The Plant J. 53:739-749. Cai, Q., He, B., and Jin, H. 2019a. A safe ride in extracellular vesicles - small RNA trafficking between plant hosts and pathogens. Curr. Opin. Plant. Biol. 52:140-148. Cai, Q., He, B., Weiberg, A., Buck, A. H., and Jin, H. 2019b. Small RNAs and extracellular vesicles: New mechanisms of cross-species communication and innovative tools for disease control. PLOS Pathog. 15:e1008090. Cai, Q., Qiao, L., Wang, M., He, B., Lin, F.-M., Palmquist, J., Huang, S.-D., and Jin, H. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126-1129. Cao, Y., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., Joachimiak, A., and Stacey, G. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3. Chang, Y. H., Yan, H. Z., and Liou, R. F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16:123-136. Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P., and Kaloshian, I. 2014. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. PNAS 111:8919-8924. Chen, H., Jin, X., Zhu, L., Lu, Y., Ma, Z., Liu, S., and Chen, X. 2020. Glycosyl hydrolase catalyzed glycosylation in unconventional media. Appl. Microbiol. Biotechnol. 104:9523-9534. Chen, W., Kastner, C., Nowara, D., Oliveira-Garcia, E., Rutten, T., Zhao, Y., Deising, H. B., Kumlehn, J., and Schweizer, P. 2016. Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J. Exp. Bot. 67:4979-4991. Cheng, W., Song, X. S., Li, H. P., Cao, L. H., Sun, K., Qiu, X. L., Xu, Y. B., Yang, P., Huang, T., Zhang, J. B., Qu, B., and Liao, Y. C. 2015. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnol. J. 13:1335-1345. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465-476. Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. Choi, J., Tanaka, K., Cao, Y., Qi, Y., Qiu, J., Liang, Y., Lee, S. Y., and Stacey, G. 2014. Identification of a plant receptor for extracellular ATP. Science 343:290-294. Cooke, D. E., Drenth, A., Duncan, J. M., Wagels, G., and Brasier, C. M. 2000. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 30:17-32. Cosgrove, D. J. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:850-861. Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C., and Voinnet, O. 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68-71. Dobrenel, T., Caldana, C., Hanson, J., Robaglia, C., Vincentz, M., Veit, B., and Meyer, C. 2016. TOR Signaling and Nutrient Sensing. Annu. Rev. Plant Biol. 67:261-285. Dunker, F., Trutzenberg, A., Rothenpieler, J. S., Kuhn, S., Prols, R., Schreiber, T., Tissier, A., Kemen, A., Kemen, E., Huckelhoven, R., and Weiberg, A. 2020. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. eLife 9. Dunoyer, P., Schott, G., Himber, C., Meyer, D., Takeda, A., Carrington, J. C., and Voinnet, O. 2010. Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912-916. Erbs, G., and Newman, M. A. 2012. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol. Plant Pathol. 13:95-104. Fawke, S., Doumane, M., and Schornack, S. 2015. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol. Mol. Biol. Rev. 79:263-280. Felix, G., Duran, J. D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant J. 18:265-276. Fernandez-Pozo, N., Rosli, H. G., Martin, G. B., and Mueller, L. A. 2015. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol. Plant 8:486-488. Fu, Z. Q., and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. Gust, A. A., Biswas, R., Lenz, H. D., Rauhut, T., Ranf, S., Kemmerling, B., Gotz, F., Glawischnig, E., Lee, J., Felix, G., and Nurnberger, T. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 282:32338-32348. Hadwiger, L. A. 2013. Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci. 208:42-49. Hartney, S., Carson, J., and Hadwiger, L. A. 2007. The use of chemical genomics to detect functional systems affecting the non-host disease resistance of pea to Fusarium solani f. sp. phaseoli. Plant Sci. 172:45-56. Have, A. t., Mulder, W., Visser, J., and van Kan, J. A. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant Microbe Interact. 11:1009-1016. Hendrix, B., Hoffer, P., Sanders, R., Schwartz, S., Zheng, W., Eads, B., Taylor, D., and Deikman, J. 2021. Systemic GFP silencing is associated with high transgene expression in Nicotiana benthamiana. PLOS One 16:e0245422. Hou, Y., and Ma, W. 2020. Natural Host-Induced Gene Silencing Offers New Opportunities to Engineer Disease Resistance. Trends Microbiol. 28:109-117. Jabs, T., Tschöpe, M., Colling, C., Hahlbrock, K., and Scheel, D. 1997. Elicitor-stimulated ion fluxes and O2− from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. PNAS 94:4800-4805. Jahan, S. N., Asman, A. K., Corcoran, P., Fogelqvist, J., Vetukuri, R. R., and Dixelius, C. 2015. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J. Exp. Bot. 66:2785-2794. Jeppesen, M. G., Navratil, T., Spremulli, L. L., and Nyborg, J. 2005. Crystal structure of the bovine mitochondrial elongation factor Tu.Ts complex. J. Biol. Chem. 280:5071-5081. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. Judelson, H. S., and Blanco, F. A. 2005. The spores of Phytophthora: weapons of the plant destroyer. Nat. Rev. Microbiol. 3:47-58. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. PNAS 103:11086-11091. Kamoun, S., Klucher, K. M., Coffey, M. D., and Tyler, B. M. 1993. A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol. Plant Microbe Interact. 6:573-573. Kamoun, S., Van West, P., Vleeshouwers, V. G., De Groot, K. E., and Govers, F. 1998. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413-1425. Kars, I., Krooshof, G. H., Wagemakers, L., Joosten, R., Benen, J. A., and van Kan, J. A. 2005. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 43:213-225. Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., and Kogel, K.-H. 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. PNAS 110:19324-19329. Koscianska, E., Kalantidis, K., Wypijewski, K., Sadowski, J., and Tabler, M. 2005. Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol. Biol. 59:647-661. Kroon, L. P., Brouwer, H., de Cock, A. W., and Govers, F. 2012. The genus Phytophthora Anno 2012. Phytopathology 102:348-364. Kubicek, C. P., Starr, T. L., and Glass, N. L. 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52:427-451. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507. Lai, M. W., and Liou, R. F. 2018. Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica. Curr. Genet. 64:931-943. Latijnhouwers, M., and Govers, F. 2003. A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2:971-977. Latijnhouwers, M., de Wit, P. J., and Govers, F. 2003. Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol. 11:462-469. Ligterink, W., Kroj, T., Zur Nieden, U., Hirt, H., and Scheel, D. 1997. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054-2057. Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., and Zheng, X. 2015a. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057-2072. Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B. M., and Wang, Y. 2015b. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and Is Recognized as a PAMP. Plant Cell 27:2057-2072. Machado, A. K., Brown, N. A., Urban, M., Kanyuka, K., and Hammond-Kosack, K. E. 2018. RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals. Pest Manag. Sci. 74:790-799. Macho, A. P., and Zipfel, C. 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263-272. Majumdar, R., Rajasekaran, K., and Cary, J. W. 2017. RNA Interference (RNAi) as a potential tool for control of mycotoxin contamination in crop Plants: concepts and considerations. Front. Plant Sci. 8:200. Mansoor, S., Amin, I., Hussain, M., Zafar, Y., and Briddon, R. W. 2006. Engineering novel traits in plants through RNA interference. Trends Plant Sci. 11:559-565. Melnyk, C. W., Molnar, A., Bassett, A., and Baulcombe, D. C. 2011. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr. Biol. 21:1678-1683. Meng, Y., Zhang, Q., Ding, W., and Shan, W. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5:43-51. Mikes, V., Milat, M.-L., Ponchet, M., Ricci, P., and Blein, J.-P. 1997. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett. 416:190-192. Molnar, A., Melnyk, C. W., Bassett, A., Hardcastle, T. J., Dunn, R., and Baulcombe, D. C. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872-875. Nie, J., Yin, Z., Li, Z., Wu, Y., and Huang, L. 2019. A small cysteine-rich protein from two kingdoms of microbes is recognized as a novel pathogen-associated molecular pattern. New Phytol. 222:995-1011. Noda, J., Brito, N., and González, C. 2010. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol. 10:1-15. Nürnberger, T., Nennstiel, D., Hahlbrock, K., and Scheel, D. 1995. Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes. PNAS 92:2338-2342. Nürnberger, T., Brunner, F., Kemmerling, B., and Piater, L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198:249-266. Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., and Scheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449-460. Ospina-Giraldo, M. D., Griffith, J. G., Laird, E. W., and Mingora, C. 2010. The CAZyome of Phytophthora spp.: a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genom. 11:1-16. Paulert, R., Ebbinghaus, D., Urlass, C., and Moerschbacher, B. M. 2010. Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants. Plant Pathol. 59:634-642. Ranf, S., Gisch, N., Schaffer, M., Illig, T., Westphal, L., Knirel, Y. A., Sanchez-Carballo, P. M., Zahringer, U., Huckelhoven, R., Lee, J., and Scheel, D. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat. Immunol. 16:426-433. Ricci, P., Bonnet, P., HUET, J. C., Sallantin, M., BEAUVAIS‐CANTE, F., Bruneteau, M., Billard, V., Michel, G., and PERNOLLET, J. C. 1989. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur. J. Biochem. 183:555-563. Ron, M., and Avni, A. 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604-1615. Sarkies, P., and Miska, E. A. 2014. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat. Rev. Mol. Cell Biol. 15:525-535. Schellenberger, R., Touchard, M., Clement, C., Baillieul, F., Cordelier, S., Crouzet, J., and Dorey, S. 2019. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. Mol. Plant Pathol. 20:1602-1616. Schlucking, K., Edel, K. H., Koster, P., Drerup, M. M., Eckert, C., Steinhorst, L., Waadt, R., Batistic, O., and Kudla, J. 2013. A new beta-estradiol-inducible vector set that facilitates easy construction and efficient expression of transgenes reveals CBL3-dependent cytoplasm to tonoplast translocation of CIPK5. Mol. Plant 6:1814-1829. Schwab, R., and Voinnet, O. 2010. RNA silencing amplification in plants: size matters. PNAS 107:14945-14946. Senthil-Kumar, M., and Mysore, K. S. 2014. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nature protocols 9:1549-1562. Shibuya, N., and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59:223-233. Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., and Shibuya, N. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204-214. Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A., and Mittler, R. 2011. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14:691-699. Tan, X., Hu, Y., Jia, Y., Hou, X., Xu, Q., Han, C., and Wang, Q. 2020. A conserved glycoside hydrolase Family 7 Cellobiohydrolase PsGH7a of Phytophthora sojae Is Required for Full Virulence on Soybean. Front. Microbiol. 11:1285. Vaucheret, H. 2008. Plant argonautes. Trends Plant Sci. 13:350-358. Vetukuri, R. R., Avrova, A. O., GRENVILLE‐BRIGGS, L. J., Van West, P., Söderbom, F., Savenkov, E. I., Whisson, S. C., and Dixelius, C. 2011. Evidence for involvement of Dicer‐like, Argonaute and histone deacetylase proteins in gene silencing in Phytophthora infestans. Mol. Plant Pathol. 12:772-785. Voinnet, O., Vain, P., Angell, S., and Baulcombe, D. C. 1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177-187. Wang, M., and Dean, R. A. 2020. Movement of small RNAs in and between plants and fungi. Mol. Plant Pathol. 21:589-601. Wang, M., Weiberg, A., Lin, F.-M., Thomma, B. P., Huang, H.-D., and Jin, H. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2:1-10. Wang, N., Yin, Z., Duan, W., Zhang, X., Pi, L., Zhang, Y., and Dou, D. 2021. sORF-Encoded Polypeptide SEP1 Is a Novel Virulence Factor of Phytophthora Pathogens. Mol. Plant Microbe Interact. 34:157-167. Weiberg, A., Wang, M., Lin, F.-M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H.-D., and Jin, H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118-123. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott, D., and Stoutjesdijk, P. A. 2001. Construct design for efficient, effective and high‐throughput gene silencing in plants. The Plant J. 27:581-590. Whisson, S. C., Avrova, A. O., P, V. A. N. W., and Jones, J. T. 2005. A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol. Plant Pathol. 6:153-163. Wille, A. C., and Lucas, W. J. 1984. Ultrastructural and histochemical studies on guard cells. Planta 160:129-142. Willmann, R., Lajunen, H. M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.-J., and Cullimore, J. V. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. PNAS 108:19824-19829. Wingard, S. A. 1928. Hosts and symptoms of ring spot, a virus disease of plants. J. Agric. Res. 37:127-153. Wirthmueller, L., Maqbool, A., and Banfield, M. J. 2013. On the front line: structural insights into plant-pathogen interactions. Nat. Rev. Microbiol. 11:761-776. Xiong, F., Liu, M., Zhuo, F., Yin, H., Deng, K., Feng, S., Liu, Y., Luo, X., Feng, L., Zhang, S., Li, Z., and Ren, M. 2019. Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould. Mol. Plant Pathol. 20:1722-1739. Xu, Y., Zhang, Y., Zhu, J., Sun, Y., Guo, B., Liu, F., Huang, J., Wang, H., Dong, S., Wang, Y., and Wang, Y. 2021. Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. Plant Physiol. 187:321-335. Yan, H. Z., and Liou, R. F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 43:430-438. Yin, H., Zhao, X., and Du, Y. 2010. Oligochitosan: A plant diseases vaccine—A review. Carbohydr. Polym. 82:1-8. Yin, H., Zhao, X., Bai, X., and Du, Y. 2009. Molecular cloning and characterization of a Brassica napus L. MAP Kinase Involved in Oligochitosan-Induced Defense Signaling. Plant Mol. Biol. Rep. 28:292-301. Yoo, B. C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y. M., Lough, T. J., and Lucas, W. J. 2004. A systemic small RNA signaling system in plants. Plant Cell 16:1979-2000. Yu, C., Li, T., Shi, X., Saleem, M., Li, B., Liang, W., and Wang, C. 2018. Deletion of endo-beta-1,4-xylanase vmXyl1 impacts the virulence of Valsa mali in apple tree. Front. Plant Sci. 9:663. Zhang, L., Kars, I., Essenstam, B., Liebrand, T. W., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., van den Ackerveken, G., and van Kan, J. A. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164:352-364. Zhang, Z., Fradin, E., de Jonge, R., van Esse, H. P., Smit, P., Liu, C.-M., and Thomma, B. P. 2013. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol. Plant Microbe Interact. 26:182-190. Zhu, X., Qi, T., Yang, Q., He, F., Tan, C., Ma, W., Voegele, R. T., Kang, Z., and Guo, J. 2017. Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol. 175:1853-1863. Zimmermann, S., Nürnberger, T., Frachisse, J.-M., Wirtz, W., Guern, J., Hedrich, R., and Scheel, D. 1997. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. PNAS 94:2751-2755. Zipfel, C. 2014. Plant pattern-recognition receptors. Trends Immunol. 35:345-351. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G., and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T., and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749-760. Zuo, J., Niu, Q.-W., and Chua, N.-H. 2000. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The plant J. 24. Zuppini, A., Baldan, B., Millioni, R., Favaron, F., Navazio, L., and Mariani, P. 2004. Chitosan induces Ca2+ -mediated programmed cell death in soybean cells. New Phytol. 161:557-568.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85311-
dc.description.abstract疫病菌 (Phytophthoraparasitica)為重要植物病原卵菌,能在許多植物造成嚴 重病害。Chang 等(2015)發現將疫病菌 OPEL 之重組蛋白注射於 Nicotiana tabacum (cv. Samsun NN)葉片可誘發癒傷葡聚醣堆積、活性氧分子生成、誘導防 禦相關基因表現及細胞凋亡; 此外,還導致菸草對 Tobacco mosaic virus, Ralstonia solanacearum 以及 P. parasitica 產生系統性抗性,顯示 OPEL 具有 elicitor 活性,本研究應用寄主誘導基因靜默 (host-induced gene silencing; HIGS) 探討 OPEL 在疫病菌致病過程扮演的角色。為建立 HIGS 系統,首先藉由農桿菌 浸潤暫表現分析雙股 RNA 表現載體 pB7GW1WG2(I)以及 XVE 系統之 pERjahBAR 的表現效率,發現兩者均能於圓葉菸草穩定生成雙股 RNA,但 pERjahBAR 尚須透過雌固醇處理才能誘導雙股 RNA 表現。以 eGFP 為指標比較 不同載體的靜默效率時,發現在浸潤後第 8 天,pERjahBAR 展現較佳之調降 16c 圓葉菸草 eGFP 訊號的能力。為了瞭解於圓葉菸草中,暫表現的雙股 RNA 是否 會導致病原目標基因靜默,於是將表現 eGFP 之疫病菌 (strain 1121)接種於以 pERjahBAR表現eGFP雙股RNA的圓葉菸草,相較於在對照組pERjahBAR(EV) 圓葉菸草,疫病菌 (strain 1121)的病害發展不受影響,但其 eGFP 訊號被顯著調 降,這些結果顯示 HIGS 可應用於研究 OPEL 基因的功能。本研究將 OPEL 基因 分成四個片段分別次選殖至載體 pERjahBAR,逐一導至圓葉菸草以表現雙股 RNA,再進一步接種疫病菌 (strain 1121),發現表現 OP 300 雙股 RNA 之圓葉菸 草在接種後 30 小時,病斑面積顯著小於以 pERjahBAR (EV)處理的對照組。進一 步進行 qPCR 分析發現,在接種後 30 小時,表現 OP 300 雙股 RNA 的葉片所含 的疫病菌量少於表現 EV 雙股 RNA 的對照組葉片,顯示表現 OP 300 雙股 RNA 可有效抑制疫病菌於接種後 30 小時的病害發展。然而,其他三個雙股 RNA 的處 理組,均未影響疫病菌病害發展。以上結果顯示,表現 OP 300 雙股 RNA 會妨礙 疫病菌 (strain 1121)的侵染,未來還需瞭解此現象是否因為下調 OPEL 或是其同源基因所引起。zh_TW
dc.description.abstractPhytophthora parasitica is an oomycete pathogen that causes severe plant diseases worldwide. OPEL, a novel elicitor protein from P. parasitica, caused cell death, callose deposition, reactive oxygen species production, and defense gene expression on Nicotiana tabacum (cv. Samsun NN). Moreover, OPEL conferred plant systemic resistance against several pathogens, including Tobacco mosaic virus, Ralstonia solanacearum, and P. parasitica. However, its role in the infection process of P. parasitica is not clear. Recent studies have shown that the expression in plants of dsRNA targeting on pathogen genes can specifically silence their targets in invading pathogens, which is known as host-induced gene silencing (HIGS). In this study, HIGS was employed to understand the role of OPEL in the infection process of P. parasitica. As a first trial, two vectors were analyzed for their efficiency to express eGFP dsRNA and to induce gene silencing on Nicotiana benthamiana 16c plants, including pB7GW1WG2(I)::eGFP and pERjahBAR::eGFP, the latter involving the use of 17β-estradiol to induce dsRNA expression. Comparison of the GFP signals at 8 days post agroinfiltration indicates pERjahBAR::eGFP showed better silencing efficiency on N. benthamiana 16c than pB7GW1WG2(I)::eGFP. To know whether transiently expressed dsRNA might lead to silencing of target genes in the pathogens, pERjahBAR::eGFP was used to express eGFP dsRNA on N. benthamiana and the plants were then inoculated with P. parasitica (strain 1121), which constitutively expresses GFP. Disease symptom shown on eGFP dsRNA-expressing N. benthamiana looked similar to that with the empty vector control. Nevertheless, the GFP florescence signal emitted by P. parasitica (strain 1121) was significantly downregulated, which indicates the occurrence of HIGS. Thus, this system was further used to uncover the function of OPEL. Four segments of OPEL cDNA sequence were subcloned into pERjahBAR and tested for their respective efficiency to affect the infection of P. parasitica (strain 1121). At 30 hours post inoculation, the size of disease lesions shown on N. benthamiana leaves expressing OPEL 300 dsRNA was smaller than that of the control plants. Analysis by qPCR also detected much less biomass of P. parasitica (strain 1121) than that from the control plants. However, expression of the other three dsRNAs showed no effect on pathogen infection. These results indicate that the expression of OP 300 dsRNA can impede disease development of P. parasitica (strain 1121). More work is required to know whether this effect is indeed caused by downregulation of OPEL and/or its homologs.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:56:52Z (GMT). No. of bitstreams: 1
U0001-2707202218573900.pdf: 8954988 bytes, checksum: 394b3f86912182a98bc1136f03fa830d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents壹、前言 1 1. 植物防禦1 1.1. Pattern-triggered immunity (PTI) 1 1.2. PRRs (pattern recognition receptors) 2 1.3. MAMPs 與其辨識 2 2. 糖苷水解酶與病原菌致病機制之關係 4 3. 疫病菌 6 3.1. 疫病菌菌所引起的植物防禦反應 7 3.2. 疫病菌致病因子 8 4. 植物 RNA 靜默 10 4.1. RNA 干擾 10 4.2. siRNA 的移動性 11 5. siRNA 的跨界移動 12 6. 寄主誘導基因靜默 (Host-induced gene silencing, HIGS) 13 7. 研究動機15 貳、材料與方法 16 1. 供試驗植株及菌種 16 1.1. 植物生長條件 16 1.2. 供試驗疫病菌生長及分離 16 1.3. 大腸桿菌勝任細胞製備 17 1.4. 農桿菌勝任細胞製備 17 2. 目標基因次選殖 18 3. 建構雙股RNA表現載體 19 4. 將表現載體轉型至農桿菌 19 5. 農桿菌浸潤與雌固醇誘導 20 6. 質體表現量分析 20 6.1. 萃取植物 total RNA 與純化 20 6.2. cDNA 製備 21 6.3. 螢光顯微鏡觀察 22 6.4. 半定量聚合酶連鎖反應 (Semi-qRT-PCR) 22 7. 疫病菌致病力分析 23 7.1. 疫病菌接種與生物量分析 23 7.2. 即時定量聚合酶連鎖反應 (qRT-PCR)23 8. 統計分析方法 24 參、結果 25 1. 於圓葉菸草大量表現雙股 RNA 25 2. 表現雙股RNA藉導調降16c圓葉菸草eGFP26 3. 接種 Phytophthora parasitica 1121 於表現 eGFP 雙股 RNA 圓葉菸草之病 害發展 27 4. eGFP 雙股 RNA 調降 Phytophthora parasitica 1121 eGFP 表現 27 5. 於圓葉菸草中大量表現 Phytophthora parasitica OPEL 雙股 RNA 28 6. 接種 Phytophthora parasitica 1121 於表現 OPEL 雙股 RNA 圓葉菸草之病害發展 29 肆、討論 30 1. 雙股RNA表現與RNAi效應的擴散 30 2. 寄主誘導疫病菌基因靜默 31 3. OPEL 為致病之所需 32 4. 結語 33 伍、參考文獻 34
dc.language.isozh-TW
dc.subjectOPELzh_TW
dc.subject寄主誘導基因靜默zh_TW
dc.subject致病因子zh_TW
dc.subject疫病菌zh_TW
dc.subject雙股RNAzh_TW
dc.subjectvirulenceen
dc.subjectdsRNAen
dc.subjecthost-induced gene silencingen
dc.subjectOPELen
dc.subjectPhytophthora parasiticaen
dc.title應用 host-induced gene silencing 探討 OPEL 在疫病菌感染過程的角色zh_TW
dc.titleTo uncover the role of OPEL in the infection process of Phytophthora parasitica by host-induced gene silencingen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張雅君(Ya-Chun Chang),張皓巽(Hao-Xun Chang)
dc.subject.keyword疫病菌,寄主誘導基因靜默,致病因子,OPEL,雙股RNA,zh_TW
dc.subject.keyworddsRNA,host-induced gene silencing,OPEL,Phytophthora parasitica,virulence,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202201797
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2022-07-29-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-2707202218573900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved