Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85306
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱子珍(Tzyy-Jen Chiou)
dc.contributor.authorTzu-Yun Suen
dc.contributor.author蘇子芸zh_TW
dc.date.accessioned2023-03-19T22:56:33Z-
dc.date.copyright2022-08-02
dc.date.issued2022
dc.date.submitted2022-07-28
dc.identifier.citationAllen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2), 207-221. Aslam, M., Fakher, B., Jakada, B. H., Cao, S., & Qin, Y. (2019). SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells, 8(12). https://doi.org/10.3390/cells8121621 Aung, K., Lin, S. I., Wu, C. C., Huang, Y. T., Su, C. L., & Chiou, T. J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol, 141(3), 1000-1011. https://doi.org/10.1104/pp.106.078063 Baek, D., Chun, H. J., Yun, D. J., & Kim, M. C. (2017). Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants. Mol Cells, 40(10), 697-705. https://doi.org/10.14348/molcells.2017.0192 Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297. https://doi.org/10.1016/s0092-8674(04)00045-5 Bieleski, R. (1973). Phosphate pools, phosphate transport, and phosphate availability. Annual review of plant physiology. Bittner, A., Hause, B., & Baier, M. (2021). Cold-priming causes dampening of oxylipin biosynthesis and signalling during the early cold- and light-triggering response of Arabidopsis thaliana. J Exp Bot, 72(20), 7163-7179. https://doi.org/10.1093/jxb/erab314 Bäurle, I. (2016). Plant Heat Adaptation: priming in response to heat stress. F1000Res, 5. https://doi.org/10.12688/f1000research.7526.1 Boyer, J. S. (1982). Plant productivity and environment. Science, 218(4571), 443-448. Bustos, R., Castrillo, G., Linhares, F., Puga, M. I., Rubio, V., Pérez-Pérez, J., Solano, R., Leyva, A., & Paz-Ares, J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 6(9), e1001102. https://doi.org/10.1371/journal.pgen.1001102 Charng, Y. Y., Liu, H. C., Liu, N. Y., Chi, W. T., Wang, C. N., Chang, S. H., & Wang, T. T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol, 143(1), 251-262. https://doi.org/10.1104/pp.106.091322 de Carvalho, C., & Caramujo, M. J. (2018). The Various Roles of Fatty Acids. Molecules, 23(10). https://doi.org/10.3390/molecules23102583 Ding, L., Lu, Z., Gao, L., Guo, S., & Shen, Q. (2018). Is Nitrogen a Key Determinant of Water Transport and Photosynthesis in Higher Plants Upon Drought Stress? Front Plant Sci, 9, 1143. https://doi.org/10.3389/fpls.2018.01143 Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat Commun, 3, 740. https://doi.org/10.1038/ncomms1732 Dissanayaka, D., Ghahremani, M., Siebers, M., Wasaki, J., & Plaxton, W. C. (2021). Recent insights into the metabolic adaptations of phosphorus-deprived plants. J Exp Bot, 72(2), 199-223. https://doi.org/10.1093/jxb/eraa482 Dong, J., Ma, G., Sui, L., Wei, M., Satheesh, V., Zhang, R., Ge, S., Li, J., Zhang, T. E., Wittwer, C., Jessen, H. J., Zhang, H., An, G. Y., Chao, D. Y., Liu, D., & Lei, M. (2019). Inositol Pyrophosphate InsP(8) Acts as an Intracellular Phosphate Signal in Arabidopsis. Mol Plant, 12(11), 1463-1473. https://doi.org/10.1016/j.molp.2019.08.002 Essigmann, B., Güler, S., Narang, R. A., Linke, D., & Benning, C. (1998). Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 95(4), 1950-1955. https://doi.org/10.1073/pnas.95.4.1950 Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., Leyva, A., Weigel, D., García, J. A., & Paz-Ares, J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 39(8), 1033-1037. https://doi.org/10.1038/ng2079 Hamburger, D., Rezzonico, E., MacDonald-Comber Petétot, J., Somerville, C., & Poirier, Y. (2002). Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell, 14(4), 889-902. https://doi.org/10.1105/tpc.000745 Hilker, M., & Schmülling, T. (2019). Stress priming, memory, and signalling in plants. Plant Cell Environ, 42(3), 753-761. https://doi.org/10.1111/pce.13526 Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S., Hincha, D. K., Kunze, R., Mueller-Roeber, B., Rillig, M. C., Rolff, J., Romeis, T., Schmülling, T., Steppuhn, A., van Dongen, J., Whitcomb, S. J., Wurst, S., Zuther, E., & Kopka, J. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc, 91(4), 1118-1133. https://doi.org/10.1111/brv.12215 Hincha, D. K., & Zuther, E. (2014). Introduction: plant cold acclimation and freezing tolerance. Plant cold acclimation, 1-6. Härtel, H., Dormann, P., & Benning, C. (2000). DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci U S A, 97(19), 10649-10654. https://doi.org/10.1073/pnas.180320497 Huang, T.-K., Han, C.-L., Lin, S.-I., Chen, Y.-J., Tsai, Y.-C., Chen, Y.-R., Chen, J.-W., Lin, W.-Y., Chen, P.-M., & Liu, T.-Y. (2013). Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. The Plant Cell, 25(10), 4044-4060. Izumi, M. (2019). Heat Shock Proteins Support Refolding and Shredding of Misfolded Proteins. Plant Physiol, 180(4), 1777-1778. https://doi.org/10.1104/pp.19.00711 Kawai, H., Ishikawa, T., Mitsui, T., Kore-eda, S., Yamada-Kawai, M., & Ohnishi, J.-i. (2014). Arabidopsis glycerol-3-phosphate permease 4 is localized in the plastids and involved in the accumulation of seed oil. Plant Biotechnology, 31(2), 159-165. Klecker, M., Gasch, P., Peisker, H., Dörmann, P., Schlicke, H., Grimm, B., & Mustroph, A. (2014). A Shoot-Specific Hypoxic Response of Arabidopsis Sheds Light on the Role of the Phosphate-Responsive Transcription Factor PHOSPHATE STARVATION RESPONSE1. Plant Physiol, 165(2), 774-790. https://doi.org/10.1104/pp.114.237990 Kobayashi, K., Awai, K., Nakamura, M., Nagatani, A., Masuda, T., & Ohta, H. (2009). Type‐B monogalactosyldiacylglycerol synthases are involved in phosphate starvation‐induced lipid remodeling, and are crucial for low‐phosphate adaptation. The Plant Journal, 57(2), 322-331. Korwin Krukowski, P., Visentin, I., Russo, G., Minerdi, D., Bendahmane, A., Schubert, A., & Cardinale, F. (2022). Transcriptome Analysis Points to BES1 as a Transducer of Strigolactone Effects on Drought Memory in Arabidopsis thaliana. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcac058 Lambers, H. (2022). Phosphorus Acquisition and Utilization in Plants. Annu Rev Plant Biol, 73, 17-42. https://doi.org/10.1146/annurev-arplant-102720-125738 Li, Z. Q., Li, J. T., Bing, J., & Zhang, G. F. (2019). The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Yi Chuan= Hereditas, 41(6), 534-547. Ling, Y., Serrano, N., Gao, G., Atia, M., Mokhtar, M., Woo, Y. H., Bazin, J., Veluchamy, A., Benhamed, M., & Crespi, M. (2018). Thermopriming triggers splicing memory in Arabidopsis. Journal of Experimental Botany, 69(10), 2659-2675. Liu, H. C., Lämke, J., Lin, S. Y., Hung, M. J., Liu, K. M., Charng, Y. Y., & Bäurle, I. (2018). Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J, 95(3), 401-413. https://doi.org/10.1111/tpj.13958 Liu, T.-Y., Huang, T.-K., Yang, S.-Y., Hong, Y.-T., Huang, S.-M., Wang, F.-N., Chiang, S.-F., Tsai, S.-Y., Lu, W.-C., & Chiou, T.-J. (2016). Identification of plant vacuolar transporters mediating phosphate storage. Nature communications, 7(1), 1-11. Liu, T. Y., Huang, T. K., Tseng, C. Y., Lai, Y. S., Lin, S. I., Lin, W. Y., Chen, J. W., & Chiou, T. J. (2012). PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell, 24(5), 2168-2183. https://doi.org/10.1105/tpc.112.096636 Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620. https://doi.org/10.1126/science.1204531 Lämke, J., & Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol, 18(1), 124. https://doi.org/10.1186/s13059-017-1263-6 Miraj, G., Shah, H., & Arif, M. (2013). Priming maize (Zea mays) seed with phosphate solutions improves seedling growth and yield. Journal of Animal and Plant Sciences, 23(3), 893-899. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in plant science, 11(1), 15-19. Mudge, S. R., Rae, A. L., Diatloff, E., & Smith, F. W. (2002). Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J, 31(3), 341-353. https://doi.org/10.1046/j.1365-313x.2002.01356.x Nakamura, Y. (2013). Phosphate starvation and membrane lipid remodeling in seed plants. Progress in lipid research, 52(1), 43-50. Nishizawa-Yokoi, A., Nosaka, R., Hayashi, H., Tainaka, H., Maruta, T., Tamoi, M., Ikeda, M., Ohme-Takagi, M., Yoshimura, K., Yabuta, Y., & Shigeoka, S. (2011). HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol, 52(5), 933-945. https://doi.org/10.1093/pcp/pcr045 Nussaume, L., Kanno, S., Javot, H., Marin, E., Pochon, N., Ayadi, A., Nakanishi, T. M., & Thibaud, M. C. (2011). Phosphate Import in Plants: Focus on the PHT1 Transporters. Front Plant Sci, 2, 83. https://doi.org/10.3389/fpls.2011.00083 Oberkofler, V., Pratx, L., & Bäurle, I. (2021). Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Curr Opin Plant Biol, 61, 102007. https://doi.org/10.1016/j.pbi.2021.102007 Péret, B., Clément, M., Nussaume, L., & Desnos, T. (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci, 16(8), 442-450. https://doi.org/10.1016/j.tplants.2011.05.006 Pacak, A., Barciszewska-Pacak, M., Swida-Barteczka, A., Kruszka, K., Sega, P., Milanowska, K., Jakobsen, I., Jarmolowski, A., & Szweykowska-Kulinska, Z. (2016). Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley. Front Plant Sci, 7, 926. https://doi.org/10.3389/fpls.2016.00926 Perl, A., Perl-Treves, R., Galili, S., Aviv, D., Shalgi, E., Malkin, S., & Galun, E. (1993). Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor Appl Genet, 85(5), 568-576. https://doi.org/10.1007/bf00220915 Poirier, Y., Jaskolowski, A., & Clúa, J. (2022). Phosphate acquisition and metabolism in plants. Current Biology, 32(12), R623-R629. Poirier, Y., Thoma, S., Somerville, C., & Schiefelbein, J. (1991). Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol, 97(3), 1087-1093. https://doi.org/10.1104/pp.97.3.1087 Prasad, R., & Chakraborty, D. (2019). Phosphorus basics: Understanding phosphorus forms and their cycling in the soil. Alabama Coop. Ext. Syst. https://www. aces. edu/blog/topics/crop-production/understanding-phosphorus-forms-and-their-cycling-in-the-soil. Puga, M. I., Mateos, I., Charukesi, R., Wang, Z., Franco-Zorrilla, J. M., de Lorenzo, L., Irigoyen, M. L., Masiero, S., Bustos, R., Rodríguez, J., Leyva, A., Rubio, V., Sommer, H., & Paz-Ares, J. (2014). SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis. Proc Natl Acad Sci U S A, 111(41), 14947-14952. https://doi.org/10.1073/pnas.1404654111 Ramaiah, M., Jain, A., Baldwin, J. C., Karthikeyan, A. S., & Raghothama, K. G. (2011). Characterization of the phosphate starvation-induced glycerol-3-phosphate permease gene family in Arabidopsis. Plant Physiol, 157(1), 279-291. https://doi.org/10.1104/pp.111.178541 Ranieri, A., Castagna, A., Baldan, B., & Soldatini, G. F. (2001). Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot, 52(354), 25-35. Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants (Basel), 8(2). https://doi.org/10.3390/plants8020034 Remy, E., Cabrito, T. R., Batista, R. A., Teixeira, M. C., Sá-Correia, I., & Duque, P. (2012). The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol, 195(2), 356-371. https://doi.org/10.1111/j.1469-8137.2012.04167.x Rubio, V., Linhares, F., Solano, R., Martín, A. C., Iglesias, J., Leyva, A., & Paz-Ares, J. (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev, 15(16), 2122-2133. https://doi.org/10.1101/gad.204401 Schramm, F., Ganguli, A., Kiehlmann, E., Englich, G., Walch, D., & von Koskull-Döring, P. (2006). The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol, 60(5), 759-772. https://doi.org/10.1007/s11103-005-5750-x Secco, D., Wang, C., Shou, H., Schultz, M. D., Chiarenza, S., Nussaume, L., Ecker, J. R., Whelan, J., & Lister, R. (2015). Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife, 4. https://doi.org/10.7554/eLife.09343 Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant Physiol, 156(3), 997-1005. https://doi.org/10.1104/pp.111.175232 Shin, H., Shin, H. S., Chen, R., & Harrison, M. J. (2006). Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J, 45(5), 712-726. https://doi.org/10.1111/j.1365-313X.2005.02629.x Shin, H., Shin, H. S., Dewbre, G. R., & Harrison, M. J. (2004). Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J, 39(4), 629-642. https://doi.org/10.1111/j.1365-313X.2004.02161.x Smith, A. P., Jain, A., Deal, R. B., Nagarajan, V. K., Poling, M. D., Raghothama, K. G., & Meagher, R. B. (2010). Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator. Plant Physiol, 152(1), 217-225. https://doi.org/10.1104/pp.109.145532 Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytol, 203(1), 32-43. https://doi.org/10.1111/nph.12797 Wu, L., Wang, R., & Xu, W. (2013). Myo-inositol polyphosphate metabolism and signaling in Arabidopsis. Chinese Bulletin of Botany, 48(1), 94. Xiao, Y., Yuan, W., Liu, J., Meng, J., Sheng, Q., Tan, Y., & Xu, C. (2020). Xyloglucan and the advances in its roles in plant tolerance to stresses. Chinese Bulletin of Botany, 55(6), 777. Xu, L., Zhao, H., Wan, R., Liu, Y., Xu, Z., Tian, W., Ruan, W., Wang, F., Deng, M., Wang, J., Dolan, L., Luan, S., Xue, S., & Yi, K. (2019). Identification of vacuolar phosphate efflux transporters in land plants. Nat Plants, 5(1), 84-94. https://doi.org/10.1038/s41477-018-0334-3 Xu, X., Zhu, T., Nikonorova, N., & De Smet, I. (2018). Phosphorylation‐Mediated Signalling in Plants. Annual Plant Reviews Online, 909-932. Yong-Villalobos, L., González-Morales, S. I., Wrobel, K., Gutiérrez-Alanis, D., Cervantes-Peréz, S. A., Hayano-Kanashiro, C., Oropeza-Aburto, A., Cruz-Ramírez, A., Martínez, O., & Herrera-Estrella, L. (2015). Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation. Proc Natl Acad Sci U S A, 112(52), E7293-7302. https://doi.org/10.1073/pnas.1522301112 Zhao, Y., Wang, J., Chen, J., Zhang, X., Guo, M., & Yu, G. (2020). A Literature Review of Gene Function Prediction by Modeling Gene Ontology. Front Genet, 11, 400. https://doi.org/10.3389/fgene.2020.00400 张芳, 董衡, 刘丹丹, & 黄鹂*曹家树. (2015). 植物长链非编码 RNA 的研究进展. 中国细胞生物学学报, 37(4), 571-581. 林嘉音, 葉信宏, 葉國楨, & 常怡雍. (2022). 植物逆境反應的預啟 (Priming) 與記憶. Taiwanese Journal of Agricultural Chemistry & Food Science, 60(2).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85306-
dc.description.abstract植物不可自由移動,其無法如同動物般依靠移動的方式來避免威脅,因此植物經常面臨環境逆境,例如:熱、乾旱以及營養缺失。若先前經歷逆境之經驗可使植物對於後續逆境產生不同反應,表示植物可被逆境預啟 (prime),並藉此獲得逆境記憶。近年來,許多研究顯示植物具有對於熱、乾旱以及低溫之逆境記憶。然而,對於植物是否可被營養缺失逆境預啟或是養分是否影響其它環境逆境記憶的研究甚少,因此本實驗對此進行研究,主要目的有兩個:1) 探討阿拉伯芥對於缺磷逆境是否具有可預啟性 (primability);2) 缺磷逆境是否影響阿拉伯芥的熱逆境記憶。第一個實驗藉由比較缺磷誘導基因之表現量判斷植物是否具有缺磷預啟性;第二個實驗利用分析熱誘導基因在生長於不同濃度營養成分之培養基之植物的表現量,推測營養成分是否影響熱記憶。 在第一個實驗中,我們藉由分析6個參與磷信號傳遞、磷轉運蛋白以及脂質重塑之缺磷誘導基因的表現,發現缺磷逆境的預啟不會影響觸發 (triggering) 後這6個基因的表現,說明在我們的試驗條件下,所分析之阿拉伯芥缺磷誘導基因對於缺磷逆境不具有可預啟性。在植物補給磷後,少數缺磷逆境基因,例如:induced by phosphate starvation 1 (IPS1) 和induced by phosphate starvation 2 (At4),雖然表現下降,但仍維持某程度的反應狀態,顯示阿拉伯芥具有缺磷逆境之轉錄記憶,使基因在逆境消失後,依舊保持反應狀態。RNA定序發現經本實驗之處理後,阿拉伯芥具有兩種類型的缺磷逆境之轉錄記憶,且分析不同基因Gene Ontology (GO) 之biological process功能性註解得知,rapid response genes、type I transcript memory genes以及type III transcript memory genes也參與其它環境逆境之反應,因此推測缺磷逆境與其它環境逆境間可能具有相互作用。在第二個實驗中,我們將植物培養於不同磷濃度與不同營養成分濃度的Hoagland營養液,並分析熱誘導基因之表現量,例如:heat shock transcription factor A1E (HSFA1E) 和ascorbate peroxidase 2 (APX2)。結果顯示,改變Hoagland營養液中的磷濃度或總營養成分濃度會對熱記憶產生影響,且低磷環境可以增強部分植物熱逆境誘導基因的表現量。 綜上所述,在本次實驗的試驗條件下發現,針對所分析之缺磷誘導基因的表現結果顯示,阿拉伯芥對於缺磷逆境不具有可預啟性,但其對於缺磷逆境具有記憶,以及低磷環境可以增強熱誘導基因的表現量,具有提升阿拉伯芥熱逆境反應預啟性的傾向。zh_TW
dc.description.abstractPlants are immobile and frequently undergo various abiotic stresses, such as heat, dehydration, and nutrient deficiency. Pre-exposure to stress can make plants respond differently to subsequent stress, suggesting that plants can be primed with the ability to memorize the prior experience of stress. Recent studies showed plants possess stress memory of heat, dehydration and cold; however, there is less-understanding of plant nutrient stress primability, and the coordination of nutrient status and other stress memory. Here, we asked 1) whether Arabidopsis has primability of phosphate (Pi) starvation; 2) whether nutrient accessibility affects the thermal memory of Arabidopsis. In the first experiment, we compared the expression of several Pi starvation-induced (PSI) genes between the seedlings with or without priming to assess the primability of Pi starvation. We found that priming of low Pi did not affect the expression of six PSI genes involved in Pi signaling, Pi transport or lipid remodeling after triggering. There results indicated that six PSI genes we tested possessed no primablity of Pi starvation under our conditions. However, the expression level of a small subset of PSI genes, such as induced by phosphate starvation 1 (IPS1) and induced by phosphate starvation 2 (At4) , remained upregulated even after Pi replenishment. This result indicated that Arabidopsis possesses the transcript memory of Pi starvation to sustain the upregulation during the stress-free phase. RNA sequencing analysis showed Arabidopsis might have two types of transcript memory patterns of Pi starvation. The biological process Gene Ontology (GO) terms of non-memory and memory genes were enriched in the responses to several other stresses, suggesting that the crosstalk of Pi starvation with other stresses. In the second experiment, we compared the expression of heat-induced genes in the seedlings grown on media with different Hoagland nutrient concentrations to evaluate the impact of nutrients on thermal memory. Based on the expression of heat-induced memory genes, such as heat shock transcription factor A1E (HSFA1E), ascorbate peroxidase 2 (APX2), we found the change of Pi or the supply of nutrient could affect in thermal memory. Noteworthily, low Pi media enhanced the expression of several heat-induced memory genes. In summary, this study suggested that Arabidopsis possesses no primability of Pi starvation based on the expression of selected PSI genes under the conditions tested. However, there are several genes belonging to transcript memory genes of Pi starvation, and low Pi conditions may force the primability of thermal memory.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:56:33Z (GMT). No. of bitstreams: 1
U0001-2507202210140700.pdf: 14271113 bytes, checksum: 003c0b2c372828badcb9a5894e30f8cd (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 摘要 ...............................................................................I Abstract .........................................................................III 目錄 ..............................................................................V 圖目錄 ...........................................................................VII 表目錄 ..........................................................................VIII 第一章、前言 ........................................................................1 一、 磷 (Phosphorus) 的重要性 .....................................................1 二、 植物在缺磷逆境的反應 ..........................................................2 三、 植物之可預啟性 (primability) 與逆境記憶 (stress memory) .......................6 第二章、材料與方法 .................................................................10 一、 實驗材料 ...................................................................10 二、 實驗設計 ...................................................................10 (一) 探討阿拉伯芥缺磷反應之可預啟性 .............................................10 (二) 磷濃度的多寡對熱逆境記憶的影響 .............................................11 (三) 不同培養基對熱逆境記憶的影響 ...............................................11 (四) RNA 高通量定序 (RNA Sequencing) 之樣品 ...................................12 三、 磷酸鹽分析方法 ..............................................................12 四、 RNA 相關的分析 ..............................................................13 五、 生物統計分析 ................................................................17 第三章、結果 .......................................................................18 一、 阿拉伯芥缺磷反應之可預啟性 ...................................................18 (一) 阿拉伯芥不同磷處理之生理反應 ...............................................18 (二) 不同磷處理下缺磷誘導基因的表現 ..............................................20 二、 藉由恢復期之基因表達定義缺磷逆境記憶基因 .......................................22 (一) 不同磷處理樣品之RNA定序分析 ................................................22 (二) 不同分群基因之功能性註解 ...................................................24 三、 缺磷反應基因與熱逆境記憶之關聯 ................................................26 四、 不同磷濃度對熱逆境記憶的影響 ..................................................27 (一) 阿拉伯芥在不同磷濃度與熱逆境處理後的生長狀況 .................................27 (二) 生長於不同磷濃度下對熱逆境誘導基因表現量之影響 ...............................27 五、 不同濃度之營養液對熱逆境記憶的影響 ............................................29 (一) 阿拉伯芥在不同濃度之營養液與熱逆境處理後的生長狀況 ...........................30 (二) 培養於不同濃度之營養液下對熱逆境誘導基因表現量之影響 ..........................30 第四章、討論 .......................................................................33 一、 阿拉伯芥缺磷反應之可預啟性 ...................................................33 二、 定義缺磷逆境記憶基因與不同分群基因之功能性註解 .................................35 三、 缺磷反應基因與熱逆境記憶之相互作用 ............................................37 第五章、結論 .......................................................................40 第六章、參考文獻 ...................................................................85 圖目錄 圖 1. 阿拉伯芥以不同磷處理後的生長狀況 ...............................................41 圖 2. 不同磷處理對阿拉伯芥鮮重與磷酸鹽濃度之影響 .....................................42 圖 3. 利用31P核磁共振分析阿拉伯芥磷酸鹽的含量 .......................................43 圖 4. 不同磷處理對阿拉伯芥缺磷誘導基因 (PSI gene) mRNA 表現量之影響 .................44 圖 5. 不同磷處理對阿拉伯芥全基因表現圖譜之影響 .......................................45 圖 6. Up-regulated rapid response genes之功能性註解 ...............................46 圖 7. Down-regulated rapid response genes之功能性註解 .............................47 圖 8. 根部up-regulated type I transcript genes之功能性註解 .........................48 圖 9. 地上部up-regulated type I transcript genes之功能性註解 .......................49 圖 10. 根部down-regulated type I transcript genes之功能性註解 ......................50 圖 11. 地上部down-regulated type I transcript genes之功能性註解 ....................51 圖 12. Up-regulated type III transcript genes之功能性註解 ..........................52 圖 13. 根部 down-regulated type III transcript genes之功能性註解 ...................53 圖 14. 地上部 Down-regulated type III transcript genes之功能性註解 .................54 圖 15. 缺磷誘導基因與熱逆境記憶基因之關聯 ............................................55 圖 16. 阿拉伯芥生長在不同磷濃度與熱逆境處理後的生長狀況 ...............................56 圖 17. 生長於不同磷濃度下對阿拉伯芥熱誘導基因表現量之影響 .............................57 圖 18. 阿拉伯芥培養於不同濃度之營養液下的生長狀況 ....................................58 圖 19. 生長於不同營養液濃度下對阿拉伯芥熱誘導基因表現量之影響 .........................59 附圖 1. RNA定序樣品之磷酸鹽濃度 ....................................................60 表目錄 表1. Hoagland培養基之成分表 .......................................................61 表2. 即時定量聚合酶連鎖反應 (Quantitative real-time PCR) 所用之引子 .................62 表3. Heat map及Gene Ontology Term Enrichment (Wordclound) 所分析之根部type I transcript genes (up-regulated) 列表 .............................................63 表3.1. Type I a transcript genes .................................................63 63表3.2. Type I b transcript genes ...............................................65 表3.3. Type I c transcript genes .................................................67 表4. Heat map及Gene Ontology Term Enrichment (Wordclound)所分析之地上部type I transcript genes (up-regulated) 列表 ...........................................68 表4.1. Type I a transcript genes .................................................68 表4.2. Type I b transcript genes .................................................70 表4.3. Type I c transcript genes .................................................72 表5. Heat map及Gene Ontology Term Enrichment (Wordclound)所分析之根部type I transcript genes (down-regulated) 列表 ...........................................76 表5.1. Type I a transcript genes .................................................76 表5.2. Type I b transcript genes .................................................78 表5.3. Type I c transcript genes .................................................78 表6. Heat map及Gene Ontology Term Enrichment (Wordclound)所分析之地上部type I transcript genes (down-regulated) 列表 .........................................79 表6.1. Type I a transcript genes .................................................79 表6.2. Type I b transcript genes .................................................81 表6.3. Type I c transcript genes .................................................82 表7. Heat map及Gene Ontology Term Enrichment (Wordclound)所分析之根部type III transcript genes (down-regulated) 列表 .......................................83 表7.1. Type III a transcript genes ...............................................83 表7.2. Type III b transcript genes ...............................................84 表7.3. Type III c transcript genes ...............................................84
dc.language.isozh-TW
dc.subject熱記憶zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject缺磷逆境zh_TW
dc.subject可預啟性zh_TW
dc.subject逆境記憶zh_TW
dc.subjectphosphate (Pi) starvationen
dc.subjectArabidopsis thalianaen
dc.subjectprimabilityen
dc.subjectstress memoryen
dc.subjectthermal memoryen
dc.title探討阿拉伯芥缺磷反應之可預啟性與磷酸鹽濃度對熱逆境記憶的影響zh_TW
dc.titlePrimability of phosphorus starvation responses and the impact of phosphate concentrations on thermal memoryen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee常怡雍(Yee-yung Charng),林詩舜(Shih-Shun Lin)
dc.subject.keyword阿拉伯芥,缺磷逆境,可預啟性,逆境記憶,熱記憶,zh_TW
dc.subject.keywordArabidopsis thaliana,phosphate (Pi) starvation,primability,stress memory,thermal memory,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202201684
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
dc.date.embargo-lift2022-08-02-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-2507202210140700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
13.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved