Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立(Nei-Li Chan)
dc.contributor.authorQing-Xuan Luen
dc.contributor.author呂晴暄zh_TW
dc.date.accessioned2023-03-19T22:56:29Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-07-27
dc.identifier.citation1. Travers A & Muskhelishvii G. DNA structure and function. FRBS J 282, 2279-95 (2015) 2. Crick F. Central dogma of molecular biology. Nature 227, 561-3 (1970) 3. Wu HY, Shyy SH, Wang JC, & Liu LF. Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433-40 (1988) 4. McKie SJ, Neuman KC & Mawell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 43, e2000286 (2021) 5. Postow L, Crisona NJ, Peter BJ, Hardy CD & Cozzarelli NR. Topological challenges to DNA replication: formation at the fork. Proc Natl Acad Sci USA. 98, 8219-26. (2011) 6. Corbett KD & Berger JM. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct. 33, 95-118. (2004) 7. Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 3, 430-40 (2002) 8. McKinnon PJ. Topoisomerases and the regulation of neural function. Nat Rev Neurosci. 17, 673-79 (2016) 9. Wang JC. Interaction between DNA and an Eschrichia coli protein ⍵. J Mol Biol. 55, 523-33 (1971) 10. Vos SM, Tretter EM, Schmidt BH, & Berger JM. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol. 12, 827-41 (2011) 11. Slesarev AI et al. DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a hyperthermophilic prokaryote. Nature 364, 735-7 (1993) 12. Rajan R, Osterman A, & Mondragón A. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site. Nucleic Acids Res. 44, 3464–74 (2016) 13. Gadelle D, Filee J, Buhler C, & Forterre P. Phylogenomics of type II DNA topoisomerases. Bioessays 25, 232-42 (2003) 14. Tsai-Pflugfelder M et al. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc Natl Acad Sci USA. 85, 7177-81 (1988) 15. Linka RM et al. C-terminal regions of topoisomerase II⍺ and IIβ determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res. 35, 3810-22 (2007) 16. Malik SB et al. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol Biol Evol. 24, 2827-41 (2007) 17. Gadelle D et al. DNA topoisomerase VIII: a novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria. Nucleic Acids Res. 42, 8578-91 (2014) 18. Takahashi TS et al. Expanding the type IIB DNA topoisomerase family: identification of new topoisomerase and topoisomerase-like proteins in mobile genetic elements. NAR Genom Bioinform 2, lqz021 (2019) 19. Schmidt BH, Osheroff N & Berger JM. Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat Struct Mol Biol 19, 1147-54 (2012) 20. Berger JM, Gamblin SJ, Harrison SC & Wang JC. Structure and mechanism of DNA topoisomerase II. Nature 379, 225-32 (1996) 21. Dong KC & Berger JM. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450, 1201-5 (2007) 22. Schoeffler AJ & Berger JM. Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism. Biochem Soc Trans. 33, 1465-70 (2005) 23. Dutta R & Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25, 24-28 (2000) 24. Corbett KD & Berger JM. Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J 22, 151-63 (2003) 25. Roca J & Wang JC. DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism. Cell 77, 609-16 (1994) 26. Roca J, Berger JM, Harrison SC, & Wang JC. DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci USA 93, 4057-62 (1996) 27. Liu Z, Deibler RW, Chan HS, & Zechiedrich L. The why and how of DNA unlinking. Nucleic Acids Res 37, 661-71 (2009) 28. Jenkins JR et al. Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res 20, 5587-92 (1992) 29. Bower JJ et al. Topoisomerase II⍺ maintains genomic stability through decatenation G2 checkpoint signaling. Oncogene 29, 4787-99 (2010) 30. Christensen MO et al. Dynamics of human DNA topoisomerases II⍺ and IIβ in living cells. J Cell Biol 157, 31-44 (2002) 31. Heng X & Le WD. The function of DNA topoisomerase IIβ in neuronal development. Neurosci Bull 26, 411-16 (2010) 32. Reimand-Uuskula L et al. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 17, 182 (2016) 33. Bernard P & Couturier M. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 226, 735-45 (1992) 34. Laponogov I et al. Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One 5, e11338 (2010) 35. Lewis RJ et al. The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO J 15, 1412-20 (1996) 36. Classen S, Olland S & Berger JM. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci USA 100, 10629-34 (2003) 37. Pendleton M et al. Topoisomerase II and leukemia. Ann N Y Acad Sci 1310, 98-110 (2014) 38. Felix CA, Kolaris CP & Osherff N. Topoisomerase II and the etiology of chromosomal translocations. DNA Repair (Amst.) 5, 1093-018 (2006) 39. Rashidi A & Fisher SI. Therapy-related acute promyelocytic leukemia: a systematic review. Med Oncol 30, 625 (2013) 40. Ganapathi RN & Ganapathi MK. Mechanisms regulating resistance to inhibitors of topoisomerase II. Front Pharmacol 4, 89(2013) 41. Arencibia JM et al. Design, synthesis, dynamic docking, biochemical characterization, and in vivo pharmacokinetics studies of novel topoisomerase II poisons with promising antiproliferative activity. J Med Chem 63, 3508-21 (2020) 42. Fortune JM & Osheroff N. Merbarone inhibits the catalytic activity of human topoisomerase II⍺ by blocking DNA cleavage. J Biol Chem 273, 17643-50 (1998) 43. Larsen AK, Escargueil AE & Skladanowski A. Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 99, 167-81 (2003) 44. Ortega JA et al. Pharmacophore hybridization to discover novel topoisomerase II poisons with promising antiproliferative activity. J Med Chem 61, 1375-79 (2018) 45. Wu CC et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333, 459-62 (2011) 46. Tripathi N, Guchhait SK & Bhartam PV. Pharmacoinformatics analysis of merbarone binding site in human topoisomerase IIα. J Mol Graph Model 86, 1-18 (2019) 47. Blower TR et al. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113, 1706-13 (2016) 48. Bailly C. DNA Relaxation and cleavage assays to study topoisomerase I inhibitors. Methods Enzymol 340, 610-23 (2001) 49. Bowater R, Aboul-Ela F & Lilley DMJ. Two-dimensional gel electrophoresis of circular DNA topoisomers. Methods Enzymol 212, 105-20 (1992) 50. Vann KR et al. Effects of Olive Metabolites on DNA cleavage mediated by human Type II topoisomerases. Biochemistry 54, 4531-41 (2015) 51. Wu CC et al. On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Res 41, 10630-40 (2013) 52. Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9, 338-50 (2009) 53. Pommier Y, Leo E, Zhang H & Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17, 421-33 (2010) 54. Alpsoy A, Yasa S & Gunduz U. Etoposide resistance in MCF-7 breast cancer cell line is marked by multiple mechanisms. Biomed Pharmacother 68, 351-5 (2014) 55. Dong Q et al. Lactate-induced MRP1 expression contributes to metabolism-based etoposide resistance in non-small cell lung cancer cells. Cell Commun Signal 18, 167 (2020) 56. Christowitz C et al. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer 19, 757 (2019) 57. Al-Malky HS, Harthi SEA, Osman AM. Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance. J Oncol Pharm Pract 26, 434-44 (2020)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85305-
dc.description.abstract拓樸異構酶是一群普遍存在於古生菌、細菌及真核生物的蛋白。當DNA進行複製、轉錄、或染色體重組等作用時,其雙股螺旋結構發生解旋而引起的拓樸構型問題,如超螺旋、連鎖、扭結等結構的形成,將使得上述作用無法進行或導致基因無法表達,甚至可能引發細胞凋亡。拓樸異構酶則能有效解決拓樸構型問題,使DNA代謝正常運作。依照演化親緣關係與催化機制的不同,拓樸異構酶可分為兩大型:第ㄧ型酵素催化DNA單股斷裂,而第二型酵素可使DNA雙股同時斷裂,使DNA拓樸結構得以發生改變,且在反應完成之後將斷裂之DNA重新接回,以確保DNA結構的完整性。第二型酵素又可再分成IIA及IIB兩種子群,在哺乳類細胞中,其IIA型酵素(Top2)包含⍺及β兩種亞型,本篇研究的目標蛋白為人類第二型拓樸異構酶β亞型 (hTop2β)。真核生物的Top2為同質二聚體所構成,結構中包含三個由二聚體交互作用介面組成、可關閉或開啟的閘門 (gate),依序為N端閘門 (N-gate)、DNA閘門 (DNA-gate)、C端閘門 (C-gate)。目前所認為的作用機制是透過”雙閘門機制” (two-gate mechanism),一段稱為G-segment的雙股DNA由N-gate進入後會被酵素活性中心的酪胺酸 (tyrosine) 切割,使一段稱為T-segment的DNA可以由此切口通過,再經由C-gate離開。 鑒於Top2對於生物體不可或缺的特性,長久以來便是許多抗癌藥物的標的。能夠抑制Top2的小分子藥物依其作用機制的不同可分為兩大類:毒化劑 (poison)及催化抑制劑 (catalytic inhibitor),poison會穩定Top2及DNA形成的切割複合體,造成DNA雙股斷裂,對於細胞有極高的毒性而得名。Catalytic inhibitor會抑制酵素作用,將蛋白鎖在反應中間態的構型而阻斷反應,對於細胞相對安全性較高、但藥效較差。雖然這些以Top2為作用標靶的藥物已在臨床上應用多年,然而,嚴重的副作用問題如急性骨髓性白血病 (acute myeloid leukemia; AML)、心臟毒性,以及日益增加的抗藥性問題仍待解決。因此與我們合作的義大利研究團隊Professor Marco De Vivo,利用藥效基團混成技術 (pharmacophore hybridization strategy),將臨床上常用的etoposide的E-ring和merbarone的thiobarbituric core組合,開發出一個名為ARN16267的新穎小分子化合物,能夠有效抑制Top2的功能並能誘發DNA雙股斷裂,後續在E-ring的meta位置用不同結構取代,得到三個抑制活性最好的衍生物,分別命名為3f、3g、3i,本研究的主要目的即在揭示此三藥物的作用機轉。 先前本實驗室已經解析出hTop2β與DNA及抗癌藥物etoposide所形成之切割複合體的結構 (PDB code 3QX3),發現etoposide主要是和Top2之DNA結合及切割的活性區域 (DNA binding and cleavage core; DBCC) 發生交互作用,且DBCC相較於全長hTop2β更易於純化及結晶,因此本研究希望透過結構解析的方式,來探討新藥和hTop2β DBCC的交互作用,進而了解藥物的作用機制,以輔助新藥開發。目前已利用高純度hTop2β進行DNA切割活性分析 (cleavage assay),確認三種藥物 (3f、3g、3i) 的確兼具毒化及抑制活性,並透過熱遷移實驗 (thermal shift assay),確認藥物和酵素及DNA會發生交互作用。接著透過氣相擴散法進行晶體培養,利用共結晶的方式,目前分別獲得hTop2β DBCC和兩種藥物的二元複合體之晶體,惟X-射線繞射解析度僅達7.86 Å及6.93 Å,尚無法進行結構解析。此外、亦透過浸潤 (soaking) 法,以hTop2β DBCC-DNA-etoposide的晶體為起始,嘗試將晶體中的etoposide置換成3f、3g、3i,目前已得到3f結合於hTop2β DBCC-DNA切割複合體的晶體,解析度約為10 Å,晶體排列屬於P3空間群。然而,由於晶體偏小且X-射線繞射解析度不佳,晶體仍待再優化。未來希望透過微調長晶條件,來得到更立體、品質更佳的晶體,以利用X-射線繞射法得到更高解析度的數據,解析出新藥和hTop2β的完整交互作用,闡明此類新穎化合物的作用機制。zh_TW
dc.description.abstractTopoisomerases are essential enzymes specialized in resolving DNA topological problems resulted from cellular DNA transactions, such as replication, transcription, recombination, and chromosome segregation. Specifically, the unwinding of DNA double helix during these processes will cause the accumulation of tension and lead to DNA entanglements in the forms of supercoiled DNA, catenanes, or knots, which are toxic for cells if left unresolved. Based on differences in their catalytic mechanisms, topoisomerases can be classified into two types: members of the type Ⅰ family cut one strand of a double-stranded DNA, whereas type Ⅱ enzymes cut both strands to allow the passage of a second DNA duplex through the DNA double-stranded break (DSB). Type II family can be further divided into IIA and IIB subclasses based on sequence and structural differences. Mammalian cells possess two functionally distinct type ⅡA topoisomerase (Top2) isoforms, Top2α and Top2β. The homodimeric architecture of Top2 features the presence of three dissociable dimer interfaces (or gates) termed N-gate, DNA-gate, and C-gate. According to the widely accepted “two-gate mechanism”, the opening of N-gate allows entry and cleavage of the G-segment DNA by the active site tyrosine to form the so-called cleavage complex, the T-segment DNA can then pass through the cleaved G-segment and depart via the C-gate, which achieves a change in DNA topology. Since Top2 is abundantly expressed in cancer cells and indispensable for cellular functions, it has long been regarded as an anticancer drug target. Small molecules capable of disrupting Top2 function can be classified as poisons and catalytic inhibitors according to their mechanisms of actions. Poisons are known to induce the formation of toxic DSB by stabilizing the Top2 cleavage complex, which effectively causes death of cancer cells. In contrast, catalytic inhibitors interfere with Top2 function by preventing DNA binding or blocking the ATP-binding site without producing DSB, therefore, they are in general safer but less effective. Though both types of Top2-targeting drugs have been applied clinically for over 40 years, serious side effects such as the emergence of secondary cancer and drug resistance call for the development of new drugs. Toward this goal, the team led by Professor Marco De Vivo has developed a set of new anticancer agents by employing a pharmacophore hybridization strategy, which combines the E-ring of etoposide, a clinically active Top2 poison, with the thiobarbituric core of merbarone, a well-known catalytic inhibitor of Top2. The resulting compound, ARN16267, was found to be a promising Top2 blocker, capable of inducing pronounced accumulation of Top2-mediated DSBs. Also, by introducing different functional groups at the meta position of the six-membered E-ring, three derivatized compounds (termed 3f, 3g, 3i) were found to exhibit improved inhibitory activity. The aim of this study is to elucidate the structural bases underlying the Top2-poisoning/inhibiting activities of these compounds. Given our lab’s experience in performing structural analysis of poison-stabilized Top2 cleavage complexes, we utilized the DNA binding and cleavage core (DBCC) of human Top2β (hTop2β) for this study. Compared to full-length human Top2β, the DBCC region is much easier to work with and can be purified and crystallized more efficiently. Hence, the proposed mechanistic dissection will be conducted by characterizing the structures of hTop2β DBCC in complexes with these novel hybrid compounds, in hoping to facilitate the development of new drugs. To this end, we have produced highly purified hTop2β DBCC and conducted cleavage assay for validating protein activity and drugs’ Top2-poisoning/inhibiting activity. Also, we performed thermal shift assay to confirm the interaction between hTop2β DBCC and drugs with and without the presence of DNA. Furthermore, using the vapor diffusion method, we performed co-crystallization of hTop2β DBCC-drug binary complexes, with partial data sets been collected to 7.86 Å and 6.93 Å resolution. Besides, by post-crystallization drug replacement, we obtained crystals of the hTop2β DBCC-DNA-3f complex, which belong to the space group P3 and diffract to ~10 Å resolution. Crystallization conditions are currently being optimized to improve the size and diffraction quality of these crystals.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:56:29Z (GMT). No. of bitstreams: 1
U0001-2607202222574900.pdf: 3006216 bytes, checksum: 6f37d2d7c5e9b13e2333e5dd99d2a54c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………I 誌謝…………………………………………………………………………...………...II 摘要…………………………………………………………………………………….III Abstract…………………………………………………………………………..…….V Contents…………………………………………………………………………..…VIII List of figures…………………………………………………………………………..XI List of tables…………………………………………………………………….….…XII 1. Introduction…………………………………………………………………...….…1 1.1. DNA topological problem and DNA topoisomerase…………………………..…2 1.2. Classification and function of DNA topoisomerase……………………………..4 1.3. The structure, molecular mechanism, and function of Type IIA topoisomerase……………………………………………………………………..…7 1.4. Human type IIA topoisomerase………………………………………………...10 1.5. Type IIA topoisomerase as an anticancer drug target and side effect………………………………………………………………………………..11 1.6. The novel antiproliferative agents of human Topoisomerase II………………..13 1.7. Specific aim of this thesis………………………………………………………16 2. Materials and Methods……………………………………………………………17 2.1. Protein expression systems……………………………………………………..18 2.1.1. DNA construct………………………………………………………………18 2.1.2. Large-scale protein expression……………………………………………...18 2.2. Protein purification……………………………………………………………..19 2.2.1. Cell lysis………………………………………………………………..…...19 2.2.2. Liquid chromatography……………………………………………………..20 (1) Immobilized metal affinity chromatography, IMAC……………………..20 (2) Heparin affinity chromatography…………………………………………20 (3) Size exclusion chromatography, SEC………………………..….………..21 2.3. Protein assays…………………………………………………..…….…..…….22 2.3.1. Topoisomerase DNA cleavage assay……………………………..…………22 2.3.2. Fluorescent-labeled DNA cleavage assay………..….………………….…..22 2.3.3. Thermal shift assay…………………………………………………….……23 2.4. Protein crystallization……………………………………………….………….24 2.4.1. Sample preparation……………………………………………………..…...24 2.4.2. DNA substrate for crystallography…………………………………..….…..24 2.4.3 Crystallization screen………………………………………………….…….25 2.4.4. Crystallization reagent optimization ………………………………………..25 2.4.5. Additive screen……………………………………………….……………..26 2.4.6. Post-crystallization drug replacement…………………..………………..…27 2.4.7. Crystal cryo-cooling………………………………….………………….….27 3. Results…………………………………………………………………………...…28 3.1. Expression and purification of C-terminal hexa-histidine tagged hTop2β DBCC………………………………………………………………………………29 3.2. Testing the Top2 poisoning activity of novel antiproliferative agents by cleavage assay…………………………………………………………………….…………..30 3.3. Examining the interaction between hTop2β DBCC and novel antiproliferative agents by thermal shift assay……………………………….…………..…….……..33 3.4. Crystallization and preliminary diffraction analysis of hTop2β DBCC in complex with novel antiproliferative agents……………………………………..…………..35 3.4.1. Co-crystallization of hTop2β DBCC in complex with the novel antiproliferative agents…………………………………………..….…………….35 3.4.2. Producing drug-bound hTop2β DBCC crystals by the post-crystallization drug replacement………………………………………………………………………..37 4. Discussion………………………………………………………………………….38 5. Figures……………………………………………………………………..…...….42 6. Tables………………………………………………………………………………61 7. References……………………………………………………….…………………70
dc.language.isoen
dc.subjectX-射線蛋白質晶體學zh_TW
dc.subject第二型拓樸異構酶zh_TW
dc.subject抗癌藥物zh_TW
dc.subjectType II DNA topoisomerasesen
dc.subjectanticancer drugen
dc.subjectX-ray crystallographyen
dc.title人類第二型拓樸異構酶β亞型與新穎小分子藥物形成之切割複合體之結構解析zh_TW
dc.titleStructural analysis of human topoisomerase IIβ cleavage core in complexes with novel antiproliferative agentsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾秀如(Shiou-Ru Tzeng),冀宏源(Hung-Yuan Chi)
dc.subject.keyword第二型拓樸異構酶,抗癌藥物,X-射線蛋白質晶體學,zh_TW
dc.subject.keywordType II DNA topoisomerases,anticancer drug,X-ray crystallography,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202201751
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
dc.date.embargo-lift2022-10-03-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-2607202222574900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved