請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85291完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃奎隆(Kwei-Long Huang) | |
| dc.contributor.author | Chun-Chiang Lai | en |
| dc.contributor.author | 賴春匠 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:55:35Z | - |
| dc.date.copyright | 2022-08-10 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-28 | |
| dc.identifier.citation | Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European journal of operational research, 205(1), 1-18. Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129. Šeda, M. (2007). Mathematical models of flow shop and job shop scheduling problems. International Journal of Applied Mathematics and Computer Sciences, 4(4), 241-246. Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times included. Naval research logistics quarterly, 1(1), 61-68. Osman, I. H., & Potts, C. N. (1989). Simulated annealing for permutation flow-shop scheduling. Omega, 17(6), 551-557. Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. Bautista-Valhondo, J., & Alfaro-Pozo, R. (2020). Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types. Central european journal of operations research, 28(1), 5-23. Naderi, B., Gohari, S., & Yazdani, M. (2014). Hybrid flexible flowshop problems: Models and solution methods. Applied mathematical modelling, 38(24), 5767-5780. Paternina-Arboleda, C. D., Montoya-Torres, J. R., Acero-Dominguez, M. J., & Herrera-Hernandez, M. C. (2008). Scheduling jobs on a k-stage flexible flow-shop. Annals of Operations Research, 164(1), 29-40. Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. Meng, L., Zhang, C., Shao, X., Zhang, B., Ren, Y., & Lin, W. (2020). More MILP models for hybrid flow shop scheduling problem and its extended problems. International journal of production research, 58(13), 3905-3930. Davis, L. (1985, July). Job shop scheduling with genetic algorithms. In Proceedings of an international conference on genetic algorithms and their applications (Vol. 140). Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations research, 41(3), 157-183. Shanker, K., & Tzen, Y. J. J. (1985). A loading and dispatching problem in a random flexible manufacturing system. International Journal of Production Research, 23(3), 579-595. Özgüven, C., Özbakır, L., & Yavuz, Y. (2010). Mathematical models for job-shop scheduling problems with routing and process plan flexibility. Applied Mathematical Modelling, 34(6), 1539-1548. Rossi, A., & Dini, G. (2007). Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method. Robotics and Computer-Integrated Manufacturing, 23(5), 503-516. Jalilvand-Nejad, A., & Fattahi, P. (2015). A mathematical model and genetic algorithm to cyclic flexible job shop scheduling problem. Journal of Intelligent Manufacturing, 26(6), 1085-1098. Gupta, J. N. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the operational Research Society, 39(4), 359-364. Brah, S. A. (1996). A comparative analysis of due date based job sequencing rules in a flow shop with multiple processors. Production Planning & Control, 7(4), 362-373. Brah, S. A., & Wheeler, G. E. (1998). Comparison of scheduling rules in a flow shop with multiple processors: A simulation. Simulation, 71(5), 302-311. Wittrock, R. J. (1985). Scheduling algorithms for flexible flow lines. IBM Journal of Research and Development, 29(4), 401-412. Wittrock, R. J. (1988). An adaptable scheduling algorithm for flexible flow lines. Operations research, 36(3), 445-453. Cheng, J., Karuno, Y., & Kise, H. (2001). A shifting bottleneck approach for a parallel-machine flowshop scheduling problem. Journal of the operations research society of Japan, 44(2), 140-156. Yang, Y. (1998). Optimization and heuristic algorithms for flexible flow shop scheduling. Columbia University. Kyparisis, G. J., & Koulamas, C. (2006). Flexible flow shop scheduling with uniform parallel machines. European journal of operational research, 168(3), 985-997. Rashidi, E., Jahandar, M., & Zandieh, M. (2010). An improved hybrid multi-objective parallel genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines. The International Journal of Advanced Manufacturing Technology, 49(9), 1129-1139. Alaykýran, K., Engin, O., & Döyen, A. (2007). Using ant colony optimization to solve hybrid flow shop scheduling problems. The international journal of advanced manufacturing technology, 35(5), 541-550. Zabihzadeh, S. S., & Rezaeian, J. (2016). Two meta-heuristic algorithms for flexible flow shop scheduling problem with robotic transportation and release time. Applied Soft Computing, 40, 319-330. Shiau, D. F., Cheng, S. C., & Huang, Y. M. (2008). Proportionate flexible flow shop scheduling via a hybrid constructive genetic algorithm. Expert systems with applications, 34(2), 1133-1143. Chen, H., Ihlow, J., & Lehmann, C. (1999, May). A genetic algorithm for flexible job-shop scheduling. In Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C) (Vol. 2, pp. 1120-1125). IEEE. Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop scheduling problem. Computers & operations research, 35(10), 3202-3212. Cheng, T. C. E., & Gupta, M. C. (1989). Survey of scheduling research involving due date determination decisions. European journal of operational research, 38(2), 156-166. Oĝuz, C., & Ercan, M. F. (2005). A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Journal of Scheduling, 8(4), 323-351. Pan, Q. K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research, 80, 50-60. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85291 | - |
| dc.description.abstract | 近年來受到新冠疫情的影響,製造業面臨著前所未有的難題,許多企業透過使用具更多功能的工具、導入新製程等方式面對疫情下應將不確定性視為新常態的市場。於生產排程層面,在一般的混合流線型生產排程問題 (Hybrid Flow Shop Scheduling Problem) 之上,建構出能求解具多功能機台、途程規劃特性問題的方法,能夠在產能與生產彈性提升的過程中,使新投入的技術與資源產出最大效益。將設置時間、機台效率等因素納入考量則可以縮小排程計畫與實際生產現場之偏差,避免排程計畫不可行或有效性較低的情況。除此之外,面對充滿不確定性的市場,對於求得排程結果所需時間的限制也相對嚴苛,必須能夠適時根據現場狀況變化更新生產參數,快速求得當下最適排程計畫,避免因等待求解而導致生產中斷。 本研究針對具有多功能機台與途程規劃之混合流線型生產排程問題,將獨立設置時間與機台、作業組合效率納入考量,提出混合整數線性規劃模型與基於模型的多階段啟發式演算法,以最小化總延遲時間為目標求解。於前者,本研究調整與改良過往學者所提出的模型,使用作業先後順序建立決策變數,建構出能夠求解上述問題的混合整數線性規劃模型。然而此作法所建立之模型規模非常大,面對實務問題無法於合理的時間內求解以協助生管人員進行排程決策。本研究進而提出基於模型的多階段求解法,利用許多生產現場存在之工件少樣多量的特性,將多階段加工流程拆分成數個求解階段,並使用工件類別取代作業先後順序建立決策變數以降低模型規模,達到縮短求得最適排程計畫所需時間的目標。本研究以數值分析與實務案例驗證證實使用此方法可以在求解時間限制較短的情況下求得較好的解,即使放寬求解時間限制,在實務規模的情境下其表現依然優於使用混合整數線性規劃模型與既有的基因演算法求解。 | zh_TW |
| dc.description.abstract | Affected by Covid-19 in recent years, the manufacturing industry is facing unprecedented difficulties. To adapt to the changing market environment, many companies develop multifunctional machines and import new processes. Scheduling methods that can solve the problem with multifunctional machines and routing characteristics can improve productivity and production flexibility. By using the methods described above, the use of investment resources can be optimized. Taking factors such as setup time and machine efficiency into consideration can reduce the deviation between schedule and the actual production environment, which can avoid infeasibility and ineffectiveness. In addition, facing an uncertain market, it is necessary to obtain the optimal schedule in a very short period of time. It enables manufacturing system to update parameters according to the on-site conditions in a timely manner and quickly generate current optimal schedule while avoiding production interruptions due to solving process. This research proposes Mixed Integer Linear Programming (MILP) and Model-based Multi-phase Scheduling Heuristic (MMSH) to solve the above-mentioned hybrid flow-shop scheduling problem with multifunctional machine and routing which take independent setup time and machine-operation based efficiency into consideration, with the objective function of minimizing total tardiness. In the MILP, this study adjusts and improves the model proposed by previous scholars, uses the sequence of operations to establish decision variables to constructs a mixed integer linear programming model that can solve problems with the above characteristics. However, the scale of the model established by this method is very large, and it cannot be solved within a reasonable time when facing practical problems. In contrast, MMSH takes advantage of the characteristics of the small variety of workpieces in many actual situations, divides the multi-stage machining process into several phases for solving, and uses workpiece categories instead of operation sequences to establish decision variables to reduce model size and the elapsed time. In this study, numerical analysis and practical case verification demonstrate that this method is better when the elapsed time limit is tighter. Even if the elapsed time limit is relaxed, its performance is still better than using MILP or existing genetic algorithm in practical scale scenarios. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:55:35Z (GMT). No. of bitstreams: 1 U0001-2607202210342000.pdf: 3750068 bytes, checksum: 3ed713599c2f4b77b85a4c160f07f322 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究架構 5 第二章 文獻探討 7 2.1流線型生產排程 7 2.2混合流線型生產排程 8 2.3彈性零工型生產排程 9 2.4啟發式優化演算法 11 2.5小結 14 第三章 問題描述與數學模型建構 15 3.1 問題描述 15 3.2 問題假設與限制 25 3.3 混合整數線性規劃模型之建構 26 3.4 混合整數線性規劃模型之範例問題與求解 29 第四章 基於模型的多階段啟發式演算法 34 4.1 基於模型的多階段啟發式演算法概念說明 34 4.2 基於模型的多階段啟發式演算法求解流程 36 4.3 基於模型的多階段啟發式演算法範例 44 第五章 數值分析與實務驗證 48 5.1 排程情境與參數設計說明 48 5.2 實驗結果與排程策略建議 51 5.3 實務案例驗證 60 第六章 結論 69 6.1 研究總結 69 6.2 未來研究方向 70 參考文獻 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最小化總延遲時間 | zh_TW |
| dc.subject | 途程規劃 | zh_TW |
| dc.subject | 獨立設置時間 | zh_TW |
| dc.subject | 混合整數線性規劃模型 | zh_TW |
| dc.subject | 混合流線型生產排程 | zh_TW |
| dc.subject | Independent setup time | en |
| dc.subject | Routing | en |
| dc.subject | Mixed integer programming model | en |
| dc.subject | Hybrid flow shop scheduling | en |
| dc.subject | Minimize total tardiness | en |
| dc.title | 具多功能機台與考慮途程規劃之混合流線型生產排程 | zh_TW |
| dc.title | Hybrid Flow-Shop Scheduling with Multifunctional Machine and Consideration of Routing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孔令傑(Ling-Chieh Kung),陳文智(Wen-Chih Chen) | |
| dc.subject.keyword | 混合流線型生產排程,途程規劃,獨立設置時間,混合整數線性規劃模型,最小化總延遲時間, | zh_TW |
| dc.subject.keyword | Hybrid flow shop scheduling,Routing,Independent setup time,Mixed integer programming model,Minimize total tardiness, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202201727 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-08 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2607202210342000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
