請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85289| 標題: | 基於相依剖析任務提出的優化模型 Head Index Refinement Model in Dependency Parsing |
| 作者: | Chin-Yin Ooi 黃瀞瑩 |
| 指導教授: | 馬偉雲(Wei-Yun Ma) |
| 共同指導教授: | 鄭卜壬(Pu-Jen Cheng) |
| 關鍵字: | 相依剖析,機器學習,深度學習,優化策略,預訓練Transformer-based模型,Tweebank v2資料集,英文Penn Treebank (PTB)資料集,中文Chinese Treebank (CTB)資料集, Dependency Parsing,Machine Learning,Deep Learning,Refinement Strategy,Transformer-based pre-trained model,Tweebank v2,Penn Treebank (PTB),Chinese Treebank (CTB), |
| 出版年 : | 2022 |
| 學位: | 碩士 |
| 摘要: | 近年來,Graph-based 模型已在相依剖析任務上取得了非常優異的成績。他們通過利用機器學習方法計算邊權重,再運用 Maximum Spanning Tree (MST) 演算法建構出最佳的剖析樹。但是,通過以上設定,目標預測標籤之間的相依關係沒有被考慮以及利用到。為了可以更充分的運用到預測標籤,我們提出了一個非常簡單且有效的 Graph-based 優化模型, 稱之為 Head Index Refinement Model (HIRM)。 它主要以預訓練 Transformer-based 模型架構為基礎搭建起來,我們在不修改原模型架構的情況下,做到了對誤判的標籤進行修訂的動作。我們的模型由兩個階段組成:首先,我們設計了矩陣分類器,主要為判斷句子裡頭兩兩單字之間是否存在相依關係,之後再將該輸出矩陣轉換成絕對位子序列格式。在這之後,第二階段我們會對第一階段的輸出進行修訂動作,我們希望第一階段被誤判的標籤可以在第二階段被修訂。最後,我們的模型在 Tweebank v2 資料集上取得了 SOTA 的成績,並且在英文 Penn Treebank (PTB) 和中文 Chinese Treebank (CTB) 資料集也取得了非常不錯的表現。 Recently, graph-based models have achieved remarkable progress in Dependency Parsing. They use machine learning to assign a weight or probability to each possible edge and then construct a Maximum Spanning Tree (MST) from these weighted edges. However, through the design, the inner dependencies among the predicted target labels are not utilized while estimating the probability of each possible edge. To fully take advantage of the predicted head index labels, in this paper, we propose a simple but very effective graph-based refinement framework for dependency parsing, named Head Index Refinement Model (HIRM). It is based on a transformer-based pre-trained language model and fine-tuning architecture, so it revises incorrect head indices without modifying the pre-trained model's architecture. It consists of two stages: first, we design a matrix classifier to independently judge each word pair if they have a dependent relationship or not, then depending on these predicted labels in the form of absolute head position. After that, our model will revise the incorrect head index label predicted by the first-stage model, and we hope that the incorrect head index label will be revised in the second stage. Our model achieves new state-of-the-art results on Tweebank v2 and comparable results on Penn Treebank (PTB) and Chinese Treebank (CTB) with paralleled computation. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85289 |
| DOI: | 10.6342/NTU202201815 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2022-08-03 |
| 顯示於系所單位: | 資料科學學位學程 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202210371800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 843.04 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
