請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85273完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡沛學(Pei-Shiue Tsai) | |
| dc.contributor.author | Hui-Ping Cheng | en |
| dc.contributor.author | 程慧萍 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:54:25Z | - |
| dc.date.copyright | 2022-08-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-29 | |
| dc.identifier.citation | 1. Ayuzawa, N., Ishibashi, Y., Takazawa, Y., Kume, H., & Fujita, T. (2012). Peritoneal morphology after long-term peritoneal dialysis with biocompatible fluid: recent clinical practice in Japan. Peritoneal Dialysis International, 32(2), 159-167. 2. Aroeira, L. S., Aguilera, A., Selgas, R., Ramírez-Huesca, M., Pérez-Lozano, M. L., Cirugeda, A., Bajo, M. A., del Peso, G., Sánchez-Tomero, J. A., Jiménez-Heffernan, J. A., & López-Cabrera, M. (2005). Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. American journal of kidney diseases : the official journal of the National Kidney Foundation, 46(5), 938–948. 3. Aroeira, L. S., Aguilera, A., Sánchez-Tomero, J. A., Bajo, M. A., del Peso, G., Jiménez-Heffernan, J. A., Selgas, R., & López-Cabrera, M. (2007). Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. Journal of the American Society of Nephrology : JASN, 18(7), 2004–2013. 4. Burkart, J. M. (2020). Encapsulating peritoneal sclerosis in peritoneal dialysis patients. UpToDate. Waltham, MA: UpToDate. 5. Basalova, N., Sagaradze, G., Arbatskiy, M., Evtushenko, E., Kulebyakin, K., Grigorieva, O., Akopyan, Z., Kalinina, N., & Efimenko, A. (2020). Secretome of Mesenchymal Stromal Cells Prevents Myofibroblasts Differentiation by Transferring Fibrosis-Associated microRNAs within Extracellular Vesicles. Cells, 9(5), 1272. 6. Balzer, M. S. (2020). Molecular pathways in peritoneal fibrosis. Cellular Signalling, 75, 109778. 7. Bajo, M. A., Del Peso, G., & Teitelbaum, I. (2017, January). Peritoneal membrane preservation. In Seminars in nephrology (Vol. 37, No. 1, pp. 77-92). WB Saunders. 8. Blank, M., Levy, Y., Amital, H., Shoenfeld, Y., Pines, M., & Genina, O. (2002). The role of intravenous immunoglobulin therapy in mediating skin fibrosis in tight skin mice. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 46(6), 1689-1690. 9. Blackburn, S. C., & Stanton, M. P. (2014, December). Anatomy and physiology of the peritoneum. In Seminars in pediatric surgery (Vol. 23, No. 6, pp. 326-330). WB Saunders. 10. Borges, F. T., Reis, L. A., & Schor, N. (2013). Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Brazilian Journal of Medical and Biological Research, 46, 824-830. 11. Devuyst, O., Margetts, P. J., & Topley, N. (2010). The pathophysiology of the peritoneal membrane. Journal of the American Society of Nephrology, 21(7), 1077-1085. 12. Dietrich, J., Roth, M., Koenig, S., Geerling, G., Mertsch, S., & Schrader, S. (2019). Analysis of lacrimal gland derived mesenchymal stem cell secretome and its impact on epithelial cell survival. Stem Cell Research, 38, 101477. 13. Doyle, L. M., & Wang, M. Z. (2019). Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 8(7), 727. 14. De la Torre, P., Pérez-Lorenzo, M. J., & Flores, A. I. (2019). Human placenta-derived mesenchymal stromal cells: a review from basic research to clinical applications. Stromal Cells Struct. Funct. Ther. Implic. 15. Driscoll, J., & Patel, T. (2019). The mesenchymal stem cell secretome as an acellular regenerative therapy for liver disease. Journal of gastroenterology, 54(9), 763-773. 16. Del Peso, G., Jiménez-Heffernan, J. A., Selgas, R., Remón, C., Ossorio, M., Fernández-Perpén, A., Sánchez-Tomero, J. A., Cirugeda, A., de Sousa, E., Sandoval, P., Díaz, R., López-Cabrera, M., & Bajo, M. A. (2016). Biocompatible Dialysis Solutions Preserve Peritoneal Mesothelial Cell and Vessel Wall Integrity. A Case-Control Study on Human Biopsies. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis, 36(2), 129–134. 17. Del Peso, G., Bajo, M. A., Fontán, M. P., Martínez, J., Marrón, B., Selgas, R., & Group of Study on Bemidextrin (2012). Effect of self-administered intraperitoneal bemiparin on peritoneal transport and ultrafiltration capacity in peritoneal dialysis patients with membrane dysfunction. A randomized, multi-centre open clinical trial. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 27(5), 2051–2058. 18. De Sousa, E., Del Peso, G., Alvarez, L., Ros, S., Mateus, A., Aguilar, A., Selgas, R., & Bajo, M. A. (2014). Peritoneal resting with heparinized lavage reverses peritoneal type I membrane failure. A comparative study of the resting effects on normal membranes. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis, 34(7), 78–705. 19. Daniel, C., Wiede, J., Krutzsch, H. C., Ribeiro, S. M., Roberts, D. D., Murphy-Ullrich, J. E., & Hugo, C. (2004). Thrombospondin-1 is a major activator of TGF-β in fibrotic renal disease in the rat in vivo. Kidney international, 65(2), 459-468. 20. Dong J, Ma Q. (2017). TIMP1 promotes multi-walled carbon nanotube-induced lung fibrosis by stimulating fibroblast activation and proliferation. Nanotoxicology;11(1):41-51. 21. Doyle, L. M., & Wang, M. Z. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8(7), 727. 22. Furuta T, Miyaki S, Ishitobi H. (2016). Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med, 5(12):1620–30. 23. Feng, Y. L., Yin, Y. X., Ding, J., Yuan, H., Yang, L., Xu, J. J., & Hu, L. Q. (2017). Alpha-1-antitrypsin suppresses oxidative stress in preeclampsia by inhibiting the p38MAPK signaling pathway: An in vivo and in vitro study. PloS one, 12(3), e0173711. 24. Fresenius Medical Care. Fresenius Medical Care 2021 Annual Report: ESRD patients in 2021: A global perspective (FMC 2021). 25. Flessner, M. F. (2006). The effect of fibrosis on peritoneal transport. Peritoneal Dialysis: A Clinical Update, 150, 174-180. 26. Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental hematology, 4(5), 267-274. 27. Gertow J, Ng CZ, Mamede Branca RM, Werngren O, Du L, Kjellqvist S, Hemmingsson P, Bruchfeld A, MacLaughlin H, Eriksson P, Axelsson J, Fisher RM. (2017). Altered Protein Composition of Subcutaneous Adipose Tissue in Chronic Kidney Disease. Kidney International Reports. 29;2(6):1208-1218. 28. Gotloib L, Wajsbrot V, Cuperman Y, Shostak A (2004) Acute oxidative stress induces peritoneal hyperpermeability, mesothelial loss, and fibrosis. Journal of Laboratory and Clinical Medicine,143(1):31–40 29. Huang, X., Xu, J., Shen, Y., Zhang, L., Xu, M., Chen, M., Ren, J., Zhou, L., Gong, H., & Zhong, P. (2019). Protein profiling of cerebrospinal fluid from patients undergoing vestibular schwannoma surgery and clinical significance. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 116, 108985. 30. Hayashida, M., Hashimoto, K., Ishikawa, T., & Miyamoto, Y. (2019). Vitronectin deficiency attenuates hepatic fibrosis in a non-alcoholic steatohepatitis-induced mouse model. International journal of experimental pathology, 100(2), 72–82. 31. Hsu, Y. T., Wu, C. H., Chao, C. Y., Wei, Y. S., Chang, Y. C., Chen, Y. T., Lin, S. L., Tsai, S. Y., Lee, Y. J., & Tsai, P. S. (2020). Hypochlorite-induced porcine model of peritoneal fibrosis through the activation of IL1β-CX3CL1-TGFβ1 signal axis. Scientific reports, 10(1), 11496. 32. Humphray, S.J., Scott, C.E., Clark, R., Marron, B., Bender, C., Camm, N., Davis, J., Jenks, A., Noon, A., Patel, M., Sehra, H., Yang, F., Rogatcheva, M.B., Milan, D., Chardon, P., Rohrer, G., Nooneman, D., de Jong, P., Meyers, S.N., Archibald, A., Beever, J.E., Schook, L.B. and Rogers, J. (2007) A high utility integrated map of the pig genome. Genome Biology 8, R139. 33. Loureiro, J., Aguilera, A., Selgas, R., Sandoval, P., Albar-Vizcaíno, P., Pérez-Lozano, M. L., Ruiz-Carpio, V., Majano, P. L., Lamas, S., Rodríguez-Pascual, F., Borras-Cuesta, F., Dotor, J., & López-Cabrera, M. (2011). Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. Journal of the American Society of Nephrology : JASN, 22(9), 1682–1695. 34. Ji, C., Zhang, J., Zhu, Y., Shi, H., Yin, S., Sun, F., Wang, Q., Zhang, L., Yan, Y., Zhang, X., Xu, W., & Qian, H. (2020). Exosomes derived from hucMSC attenuate renal fibrosis through CK1δ/β-TRCP-mediated YAP degradation. Cell death & disease, 11(5), 327. 35. Jing, S., Kezhou, Y., Hong, Z., Qun, W., & Rong, W. (2010). Effect of renin-angiotensin system inhibitors on prevention of peritoneal fibrosis in peritoneal dialysis patients. Nephrology (Carlton, Vic.), 15(1), 27–32. 36. Kolesnyk, I., Dekker, F. W., Noordzij, M., le Cessie, S., Struijk, D. G., & Krediet, R. T. (2007). Impact of ACE inhibitors and AII receptor blockers on peritoneal membrane transport characteristics in long-term peritoneal dialysis patients. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis, 27(4), 446–453. 37. Kolesnyk, I., Noordzij, M., Dekker, F. W., Boeschoten, E. W., & Krediet, R. T. (2009). A positive effect of AII inhibitors on peritoneal membrane function in long-term PD patients. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 24(1), 272–277. 38. Krediet, R. T., Barreto, D. L., & Struijk, D. G. (2016). Can free water transport be used as a clinical parameter for peritoneal fibrosis in long-term PD patients?. Peritoneal Dialysis International, 36(2), 124-128. 39. Krediet, R. T., Zweers, M. M., Van Der Wal, A. C., & Struijk, D. G. (2000). Neoangiogenesis in the peritoneal membrane. Peritoneal Dialysis International, 20(2_suppl), 19-25. 40. Krediet R. T. (2021). Acquired Decline in Ultrafiltration in Peritoneal Dialysis: The Role of Glucose. Journal of the American Society of Nephrology : JASN, 32(10), 2408–2415. 41. Karl, Z. J. T., Khanna, O. N. R., Leonor, B. F. P., Ryan, P., Moore, H. L., & Nielsen, M. P. (1987). Peritoneal equilibration test. Peritoneal Dialysis International, 7(3), 138-148. 42. Kim, H. O., Choi, S. M., & Kim, H. S. (2013). Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative Medicine, 10(3), 93-101. 43. Kalra, A., Wehrle, C. J., & Tuma, F. (2021). Anatomy, abdomen and pelvis, peritoneum. In StatPearls [Internet]. StatPearls publishing. 44. Kato, H., Mizuno, T., Mizuno, M., Sawai, A., Suzuki, Y., Kinashi, H., Nagura, F., Maruyama, S., Noda, Y., Yamada, K., Matsuo, S., & Ito, Y. (2012). Atrial natriuretic peptide ameliorates peritoneal fibrosis in rat peritonitis model. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association, 27(2), 526–536. 45. Kuzmuk, K. N., & Schook, L. B. (2011). Pigs as a model for biomedical sciences. The genetics of the pig, 2, 426-444. 46. Kariya, T., Nishimura, H., Mizuno, M., Suzuki, Y., Matsukawa, Y., Sakata, F., Maruyama, S., Takei, Y., & Ito, Y. (2018). TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. American journal of physiology. Renal physiology, 314(2), F167–F180. 47. Kehl, D., Generali, M., Mallone, A., Heller, M., Uldry, A. C., Cheng, P., Gantenbein, B., Hoerstrup, S. P., & Weber, B. (2019). Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regenerative medicine, 4, 8. 48. Li, T., Yan, Y., Wang, B., Qian, H., Zhang, X., Shen, L., Wang, M., Zhou, Y., Zhu, W., Li, W., & Xu, W. (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem cells and development, 22(6), 845–854. 49. Li, P., Kaslan, M., Lee, S. H., Yao, J., & Gao, Z. (2017). Progress in Exosome Isolation Techniques. Theranostics, 7(3), 789–804. 50. Li, H., Tian, Y., Xie, L., Liu, X., Huang, Z., & Su, W. (2020). Mesenchymal stem cells in allergic diseases: Current status. Allergology International, 69(1), 35-45. 51. Leventhal, A., Chen, G., Negro, A., & Boehm, M. (2012). The benefits and risks of stem cell technology. Oral diseases, 18(3), 217. 52. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. (2019). Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells International; 2019:9628536. 53. Lee JH, Ha DH, Kyu H. (2020). Goeproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. International Journal of Molecular Sciences; 21(13):4774. 54. López-Cabrera, M. (2014). Mesenchymal conversion of mesothelial cells is a key event in the pathophysiology of the peritoneum during peritoneal dialysis. Advances in medicine, 2014. 55. Misra, M., & Khanna, R. (2010). Peritoneal equilibration test. Up To Date. 56. Mohammadipoor, A., Antebi, B., Batchinsky, A. I., & Cancio, L. C. (2018). Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respiratory research, 19(1), 218. 57. Mansouri, N., Willis, G. R., Fernandez-Gonzalez, A., Reis, M., Nassiri, S., Mitsialis, S. A., & Kourembanas, S. (2019). Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI insight, 4(21) 58. Morelle, J., Sow, A., Hautem, N., Bouzin, C., Crott, R., Devuyst, O., & Goffin, E. (2015). Interstitial fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis. Journal of the American Society of Nephrology, 26(10), 2521-2533. 59. Monteiro-Riviere, N.A. (1986) Ultra-structural evaluation of the porcine integument. In: Tumbleson, M. (ed.) Swine in Biomedical Research. Plenum Press, New York, pp. 641–665. 60. Marcello E, Borroni B, Pelucchi S, Gardoni F, Di Luca M. (2017). ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer’s disease. Expert Opinion on Therapeutic Targets; 21(11):1017–26. 61. N.C. Mlambo, B. Hylander, A. Brauner. (1999). Increased levels of transforming growth factor beta 1 and basic fibroblast growth factor in patients on CAPD: a study during non-infected steady state and peritonitis. Inflammation, 23(2), 131-139. 62. Nagasaki, K., Nakashima, A., Tamura, R., Ishiuchi, N., Honda, K., Ueno, T., Doi, S., Kato, Y., & Masaki, T. (2021). Mesenchymal stem cells cultured in serum-free medium ameliorate experimental peritoneal fibrosis. Stem cell research & therapy, 12(1), 203. 63. Niu, R., Liu, Y., Zhang, Y., Zhang, Y., Wang, H., Wang, Y., Wang, W., & Li, X. (2017). iTRAQ-Based Proteomics Reveals Novel Biomarkers for Idiopathic Pulmonary Fibrosis. PloS one, 12(1), e0170741. 64. Phelps, J., Sanati-Nezhad, A., Ungrin, M., Duncan, N. A., & Sen, A. (2018). Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem cells international, 2018. 65. Perl, J., & Bargman, J. M. (2016). Peritoneal dialysis: from bench to bedside and bedside to bench. American Journal of Physiology-Renal Physiology, 311(5), F999-F1004. 66. Raby, A. C., & Labéta, M. O. (2018). Preventing peritoneal dialysis-associated fibrosis by therapeutic blunting of peritoneal toll-like receptor activity. Frontiers in Physiology, 9, 1692 67. Rada, J. A., Cornuet, P. K., & Hassell, J. R. (1993). Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Experimental eye research, 56(6), 635–648. 68. R. Rodrigues-Diez, L.S. Aroeira, M. Orejudo, M.A. Bajo, J.J. Heffernan, R.R. Rodrigues-Diez, S. Rayego-Mateos, A. Ortiz, G. Gonzalez-Mateo, M. Lopez- Cabrera, R. Selgas, J. Egido, M. Ruiz-Ortega. (2014). IL-17A is a novel player in dialysisinduced peritoneal damage. Kidney International. 86 (2) 303–315. 69. Ren, R., Tan, X. H., Zhao, J. H., Zhang, Q. P., Zhang, X. F., Ma, Z. J., Peng, Y. N., Liu, Q. B., Zhang, H. Y., Li, Y. Q., He, R., Zhao, Z. Q., & Yi, X. N. (2019). Bone marrow mesenchymal stem cell-derived exosome uptake and retrograde transport can occur at peripheral nerve endings. Artificial cells, nanomedicine, and biotechnology, 47(1), 2918–2929. 70. Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical Trials With Mesenchymal Stem Cells: An Update. Cell transplantation, 25(5), 829–848. 71. Sjøland, J. A., Smith Pedersen, R., Jespersen, J., & Gram, J. (2004). Intraperitoneal heparin reduces peritoneal permeability and increases ultrafiltration in peritoneal dialysis patients. Nephrology Dialysis Transplantation, 19(5), 1264-1268. 72. Saxena, R. (2008). Pathogenesis and treatment of peritoneal membrane failure. Pediatric Nephrology, 23(5), 695-703. 73. Strippoli, R., Moreno-Vicente, R., Battistelli, C., Cicchini, C., Noce, V., Amicone, L., Marchetti, A., Del Pozo, M. A., & Tripodi, M. (2016). Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem cells international, 2016, 3543678. 74. Skalnikova, H. K. (2013). Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie, 95(12), 2196-2211. 75. S.J. Davies. (2014). Peritoneal solute transport and inflammation. American Journal of Kidney Diseases, 64, pp. 978-986. 76. Shin, S., Lee, J., Kwon, Y., Park, K. S., Jeong, J. H., Choi, S. J., Bang, S. I., Chang, J. W., & Lee, C. (2021). Comparative Proteomic Analysis of the Mesenchymal Stem Cells Secretome from Adipose, Bone Marrow, Placenta and Wharton's Jelly. International journal of molecular sciences, 22(2), 845. 77. Tawada, M., Ito, Y., Banshodani, M., Yamashita, M., Shintaku, S., Sun, T., Suzuki, Y., Kinashi, H., Kubo, Y., Ando, M., Yamaguchi, M., Katsuno, T., Mizuno, M., & Kawanishi, H. (2021). Vasculopathy plays an important role during the development and relapse of encapsulating peritoneal sclerosis with conventional peritoneal dialysis solutions. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 36(8), 1519–1526. 78. Thomas, J.W., Touchman, J.W., Blakesley, R.W., et al. (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424,788–93. 79. Thomas, A. H., Edelman, E. R., & Stultz, C. M. (2007). Collagen fragments modulate innate immunity. Experimental Biology and Medicine (Maywood); 232: 406–11. 80. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature reviews immunology, 8(9), 726-736. 81. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. (2017). Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. International Journal of Molecular Sciences;18:1852. 82. Wei, Y. S., Cheng, H. P., Wu, C. H., Chang, Y. C., Lin, R. W., Hsu, Y. T., Chen, Y. T., Lin, S. L., Tsai, S. Y., Wu, S. C., & Tsai, P. S. (2022). Oxidative Stress-Induced Alterations of Cellular Localization and Expression of Aquaporin 1 Lead to Defected Water Transport upon Peritoneal Fibrosis. Biomedicines, 10(4), 810. 83. Wang, J., Liu, S., Li, H., Sun, J., Zhang, S., Xu, X., Liu, Y., Wang, Y., & Miao, L. (2015). A review of rodent models of peritoneal dialysis and its complications. International urology and nephrology, 47(1), 209–215. 84. Wang, Z. G., He, Z. Y., Liang, S., Yang, Q., Cheng, P., & Chen, A. M. (2020). Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy, 11(1), 1-11. 85. Yang, X., Yan, H., Jiang, N., Yu, Z., Yuan, J., Ni, Z., & Fang, W. (2020). IL-6 trans-signaling drives a STAT3-dependent pathway that leads to structural alterations of the peritoneal membrane. American journal of physiology. Renal physiology, 318(2), F338–F353. 86. Xia, J., Minamino, S., Kuwabara, K., & Arai, S. (2019). Stem cell secretome as a new booster for regenerative medicine. Bioscience trends, 13(4), 299-307. 87. Xiao, D., Liang, T., Zhuang, Z., He, R., Ren, J., Jiang, S., Zhu, L., Wang, K., & Shi, D. (2020). Lumican promotes joint fibrosis through TGF-β signaling. FEBS open bio, 10(11), 2478–2488. 88. Yao, X., Wang, J., Zhu, J., & Rong, X. (2020). The anti-fibrotic effect of human fetal skin-derived stem cell secretome on the liver fibrosis. Stem Cell Research & Therapy, 11(1), 1-10. 89. Yang, C. Y., Chang, P. Y., Chen, J. Y., Wu, B. S., Yang, A. H., & Lee, O. K. (2021). Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem cell research & therapy, 12(1), 193. 90. Yang CY, Chau YP, Lee HT, Kuo HY, Lee OK, Yang AH. (2013). Cannabinoid receptors as therapeutic targets for dialysis-inducedperitoneal fibrosis. American Journal of Nephrology 37(1):50–58. 91. Yin, S., Ji, C., Wu, P., Jin, C., & Qian, H. (2019). Human umbilical cord mesenchymal stem cells and exosomes: bioactive ways of tissue injury repair. American journal of translational research, 11(3), 1230–1240. 92. Zhou, Q., Bajo, M. A., Del Peso, G., Yu, X., & Selgas, R. (2016). Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney International, 90(3), 515-524. 93. Zuo R, Liu MH, Wang YQ. (2019). BM-MSC-derived exosomes alleviate radiationinduced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/beta-catenin signaling. Stem Cell Research & Therapy;10(1):30. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85273 | - |
| dc.description.abstract | 腹膜透析是一種常用在末期腎臟病患者身上的腎臟替代療法,腹膜透析的原理是藉由腹膜的半通透性進行離子平衡的校正並移除多餘水分和廢物,然而,長期的腹膜透析會導致腹膜型態上及功能上的改變,甚至在最後引起腹膜纖維化的病變。為了解決這個問題,利用間質幹細胞來源的分泌體(secretome)做為治療選項的想法被提出及研究,之前的研究證實間質幹細胞來源的分泌成份可在囓齒類動物模型中,有效的減緩肺纖維化及肝臟纖維化的情形。在本研究中,我們以生技公司及合作實驗室獲得的臍帶(US)及胎盤(PS)間質幹細胞來源的分泌體作為研究目標,透過人類腹膜間皮細胞(MeT-5A)及三品種豬(藍瑞斯-約克夏-杜洛克)分別作為體外及體內實驗的平台,去探討臍帶間質幹細胞來源的分泌體之治療潛能;而胎盤間質幹細胞分泌體只以體外實驗結果探討其對於人類腹膜間皮細胞之影響。本次研究使用次氯酸鈉(NaClO)在細胞及動物實驗中來誘導腹膜纖維化產生。根據研究的結果,在細胞實驗中,加入US及PS不但對間皮細胞沒有毒殺姓,甚至還可以提升間皮細胞的細胞存活率,然而只有PS可以顯著的改善經過次氯酸鈉損傷後的細胞存活率。在次氯酸鈉誘導腹膜纖維化的豬模型中,US可以改善腹膜的小型溶質運輸能力及降低壁層腹膜組織的第一型膠原蛋白沉積;然而,間皮的完整性、纖維母細胞的積累及壁層和臟層腹膜組織表面的增厚並無法得到較好的改善,除此之外,在進行動物實驗的過程中,我們還發現四隻中有一個體於給予US後會有嚴重的過敏反應,顯示以未純化之幹細胞培養液直接用於治療須特別留意。在本論文中,給予臍帶(US)間質幹細胞來源的全分泌體並無法明顯改善次氯酸鈉誘導的腹膜纖維化情形,未來是否需進一步針對培養液進行分離與純化(例如分離外泌體exosomes)值得近一步研究。 | zh_TW |
| dc.description.abstract | Peritoneal dialysis (PD) is one kind of renal replacement therapy often used in end-stage renal disease (ESRD) patients. The principle of PD is to correct electrolyte imbalance and remove excess fluid and waste through the semi-permeable peritoneum. However, long-term PD will cause morphological and functional changes in the peritoneum, finally leading to peritoneal fibrosis. To solve this problem, using mesenchymal stem cells (MSCs)-derived secretome as a treatment was proposed and studied. Previous studies have already shown that the secretome component of MSC can attenuate the pulmonary fibrosis and liver fibrosis in the rodent model. In this study, secretomes from the umbilical cord (US) and placenta (PS) obtained from the company and a collaboration lab were used as treatment sources. Human peritoneal mesothelial cell line (MeT-5A) and LYD (Landrace-Yorkshire-Duroc) pigs were used as a platform to investigate the therapeutic potential of US in vitro and in vivo, whereas PS was only studied in vitro. To mimic the PF situation, NaClO was used to induce PF in both cell experiments and in the porcine model. According to the results in this study, US and PS addition can increase the cell viability without causing cytotoxicity on mesothelial cells, while only PS can significantly improve the cell viability after NaClO injury. In the NaClO porcine model, US application can improve the small solute transport capability of the peritoneum and decrease collagen I deposition on the parietal peritoneum. However, the mesothelium integrity, myofibroblast accumulation, and parietal and visceral peritoneum tissue thickness were not affected after the US application. Moreover, we found that after US administration, one of four pigs had an allergy reaction indicating caution is needed upon the usage of whole MSCs culture supernatant without purification. In conclusion, the complete US application did not show significant improvement in NaClO-induced PF porcine model in the current study; whether fractions of the US (e.g., exosomes) can result in better therapeutic outcomes require further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:54:25Z (GMT). No. of bitstreams: 1 U0001-2507202210191500.pdf: 2886700 bytes, checksum: dc1bdc95388802ccb4d15420b7596f52 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………... i 誌謝………………………………………………………………………………..…..ii Abstract………………………………………………………………………………iii 中文摘要…………………………………………………………………………........v Contents……………………………………………………………………………...vi List of figures………………………………………………………………………...ix List of tables…………………………………………………………………………..x Chapter 1 Introduction 1.1 The peritoneum structure and functions…………………………………………..1 1.2 The peritoneal fibrosis induced by long-term peritoneal dialysis (PD) 1.2.1 The structural abnormalities and functional changes of peritoneal membrane in peritoneal dialysis-induced peritoneal fibrosis patients………………………….1 1.2.2 Angiogenesis upon peritoneal fibrosis………………………………………..3 1.2.3 Molecules and common signaling pathways involved in peritoneal fibrosis…4 1.2.4 Peritoneal equilibration test (PET) as a semi-quantitative measurement for the transport function of peritoneal membrane………………………………………....5 1.2.5 Animal models to mimic the changes of peritoneum in PD patients…………6 1.2.6 Options for preventing or the treatment for PD-induced peritoneal fibrosis…8 1.3 The potential therapeutic outcomes of MSC-secretome in fibrotic diseases 1.3.1 The impacts of mesenchymal stem cells in regenerative medicine…………..9 1.3.2 Applications of MSCs paracrine product, the secretome, on fibrotic disease models……………………………………………………………….…………….10 1.4 Aim of this project………………………………………………………………..12 Chapter 2 Materials and methods 2.1 Cell line and cell culture………………………………………………………….14 2.2 Umbilical cord and placenta mesenchymal stem cell-derived secretome and proteomic analysis……………………………………………………………………14 2.3 Cell viability assay (Thiazolyl Blue Tetrazolium Bromide, MTT assay)………..16 2.4 In vitro experiment of MeT-5A…………………………………………………..17 2.5 Sodium hypochlorite-induced peritoneal fibrosis and US treatment pig model…18 2.6 Peritoneum equilibration test (PET)……………………………………………...19 2.7 Western blot………………………………………………………………………20 2.8 Histological and immunofluorescence staining of tissue sections……………….22 2.9 Quantification of peritoneum thickness, mesothelium integrity, and accumulation of myofibroblast……………………………………………………………………...23 2.10 Statistical analysis……………………………………………………………....24 Chapter 3 Results 3.1 US and PS did not cause cytotoxicity on mesothelial cell……………………….27 3.2 Higher concentration of PS promoted cell viability of MeT-5A after NaClO injury…………………………………………………….…………………………...29 3.3 Proteomic analysis of US and PS……………………...…………………………31 3.4 Peritoneal fibrosis increased the small solute transport capacity of the peritoneum and US treatment mitigated the changes in vivo……………………………………..37 3.5 US as treatment did not decrease the thickness of the peritoneum tissue………..40 3.6 US did not preserve mesothelium integrity nor decrease the accumulation of myofibroblast in the NaClO-induced peritoneal fibrosis porcine model…………….45 3.7 US application decreased the collagen-related protein expression in parietal peritoneum tissue……………………………………………………………………..50 Chapter 4 Discussions…………………………………………………………..52 Chapter 5 Conclusions and future work..……………………………………..64 References………………………………………………………………………...…65 | |
| dc.language.iso | en | |
| dc.subject | 腹膜纖維化 | zh_TW |
| dc.subject | 間皮細胞 | zh_TW |
| dc.subject | 次氯酸鈉誘導豬模型 | zh_TW |
| dc.subject | 分泌體 | zh_TW |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | 腹膜透析 | zh_TW |
| dc.subject | mesothelial cell | en |
| dc.subject | NaClO-induced pig model | en |
| dc.subject | peritoneal dialysis | en |
| dc.subject | peritoneal fibrosis | en |
| dc.subject | secretome | en |
| dc.subject | mesenchymal stem cell | en |
| dc.title | 探討臍帶及胎盤間質幹細胞來源的分泌體對次氯酸鈉誘導的腹膜纖維化之治療潛能 | zh_TW |
| dc.title | Investigate the Therapeutic Potential of Umbilical Cord and Placenta Mesenchymal Stem Cell-Derived secretome on Sodium Hypochlorite-Induced Peritoneal Fibrosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 蔡沛學(0000-0001-8217-6285) | |
| dc.contributor.oralexamcommittee | 張惠雯(Hui- Wen Chang),武敬和(Ching-Ho Wu),張晏禎(Yen-Chen Chang) | |
| dc.contributor.oralexamcommittee-orcid | 張惠雯(0000-0001-8877-1886),武敬和(0000-0002-5025-2551),張晏禎(0000-0002-4971-4237) | |
| dc.subject.keyword | 腹膜透析,腹膜纖維化,間質幹細胞,分泌體,次氯酸鈉誘導豬模型,間皮細胞, | zh_TW |
| dc.subject.keyword | peritoneal dialysis,peritoneal fibrosis,mesenchymal stem cell,secretome,NaClO-induced pig model,mesothelial cell, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU202201685 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-01 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2507202210191500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
