Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85272
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃盛修(Sheng-Hsiu Huang)
dc.contributor.authorSheng-Wen Hsuehen
dc.contributor.author薛盛文zh_TW
dc.date.accessioned2023-03-19T22:54:21Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-07-29
dc.identifier.citation3M (2020). Comparison of Ffp2, Kn95, and N95 and Other Filtering Facepiece Respirator Classes, 3M Minneapolis, MN. Asadi, S., Bouvier, N., Wexler, A.S. and Ristenpart, W.D. (2020a). The Coronavirus Pandemic and Aerosols: Does Covid-19 Transmit Via Expiratory Particles?, Taylor & Francis. Asadi, S., Cappa, C.D., Barreda, S., Wexler, A.S., Bouvier, N.M. and Ristenpart, W.D. (2020b). Efficacy of Masks and Face Coverings in Controlling Outward Aerosol Particle Emission from Expiratory Activities. Scientific reports 10: 1-13. Bake, B., Larsson, P., Ljungkvist, G., Ljungström, E. and Olin, A. (2019). Exhaled Particles and Small Airways. Respiratory research 20: 8. Chang, D.W. and Care, A.A.f.R. (2002). Aarc Clinical Practice Guideline: In-Hospital Transport of the Mechanically Ventilated Patient--2002 Revision & Update. Respiratory care 47: 721-723. Chao, C.Y.H., Wan, M.P., Morawska, L., Johnson, G.R., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y. and Xie, X. (2009). Characterization of Expiration Air Jets and Droplet Size Distributions Immediately at the Mouth Opening. Journal of Aerosol Science 40: 122-133. Chen, Y.-Y., Chen, L.-Y., Lin, S.-Y., Chou, P., Liao, S.-Y. and Wang, F.-D. (2012). Surveillance on Secular Trends of Incidence and Mortality for Device–Associated Infection in the Intensive Care Unit Setting at a Tertiary Medical Center in Taiwan, 2000–2008: A Retrospective Observational Study. BMC infectious diseases 12: 209. Duguid, J. (1946). The Size and the Duration of Air-Carriage of Respiratory Droplets and Droplet-Nuclei. Epidemiology & Infection 44: 471-479. Duprez, F., De Terwangne, C., Poncin, W., Bruyneel, A., De Greef, J. and Wittebole, X. (2022). A Modified Aerosol Mask Could Significantly Save Oxygen Supplies During Sars Cov 2 Pandemic. Journal of emergency nursing 48: 248-250. Farkas, L.G., Katic, M.J. and Forrest, C.R. (2005). International Anthropometric Study of Facial Morphology in Various Ethnic Groups/Races. Journal of Craniofacial Surgery 16: 615-646. Fernstrom, A. and Goldblatt, M. (2013). Aerobiology and Its Role in the Transmission of Infectious Diseases. Journal of pathogens 2013. Fuentes, S. and Chowdhury, Y.S. (2021). Fraction of Inspired Oxygen. StatPearls [Internet]. Garner, J.S., Jarvis, W.R., Emori, T.G., Horan, T.C. and Hughes, J.M. (1988). Cdc Definitions for Nosocomial Infections, 1988. American journal of infection control 16: 128-140. Harber, P., Shimozaki, S., Barrett, T., Losides, P. and Fine, G. (1989). Effects of Respirator Dead Space, Inspiratory Resistance, and Expiratory Resistance Ventilatory Loads. American journal of industrial medicine 16: 189-198. Holmgren, H., Gerth, E., Ljungström, E., Larsson, P., Almstrand, A.-C., Bake, B. and Olin, A.-C. (2013). Effects of Breath Holding at Low and High Lung Volumes on Amount of Exhaled Particles. Respiratory physiology & neurobiology 185: 228-234. Hui, D.S., Chow, B.K., Lo, T., Tsang, O.T., Ko, F.W., Ng, S.S., Gin, T. and Chan, M.T. (2019). Exhaled Air Dispersion During High-Flow Nasal Cannula Therapy Versus Cpap Via Different Masks. European Respiratory Journal 53: 1802339. Hui, D.S., Hall, S.D., Chan, M.T., Chow, B.K., Tsou, J.Y., Joynt, G.M., Sullivan, C.E. and Sung, J.J. (2006). Noninvasive Positive-Pressure Ventilation: An Experimental Model to Assess Air and Particle Dispersion. Chest 130: 730-740. Hui, D.S.C., Chow, B. and Chan, M. (2018). Late Breaking Abstract-Exhaled Air Dispersion During Application of Cpap Via Nasal Pillows and Oronasal Mask Versus High Flow Nasal Cannula Therapy, Eur Respiratory Soc. Ip, M., Tang, J.W., Hui, D.S., Wong, A.L., Chan, M.T., Joynt, G.M., So, A.T., Hall, S.D., Chan, P.K. and Sung, J.J. (2007). Airflow and Droplet Spreading around Oxygen Masks: A Simulation Model for Infection Control Research. American journal of infection control 35: 684-689. Johnson, G., Morawska, L., Ristovski, Z., Hargreaves, M., Mengersen, K., Chao, C.Y.H., Wan, M., Li, Y., Xie, X. and Katoshevski, D. (2011). Modality of Human Expired Aerosol Size Distributions. Journal of Aerosol Science 42: 839-851. Jones, H., Turner, S. and Hughes, J. (1984). Performance of the Large-Reservoir Oxygen Mask (Ventimask). The Lancet 323: 1427-1431. Liu, Y., Xi, P., Joseph, M., Zhuang, Z., Shu, C., Jiang, L., Bergman, M. and Chen, W. (2015). Variations in Head-and-Face Shape of Chinese Civilian Workers. Annals of Occupational Hygiene 59: 932-944. Mardimae, A., Slessarev, M., Han, J., Sasano, H., Sasano, N., Azami, T., Fedorko, L., Savage, T., Fowler, R. and Fisher, J.A. (2006). Modified N95 Mask Delivers High Inspired Oxygen Concentrations While Effectively Filtering Aerosolized Microparticles. Annals of emergency medicine 48: 391-399. e392. Morawska, L., Johnson, G., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C.Y.H., Li, Y. and Katoshevski, D. (2009). Size Distribution and Sites of Origin of Droplets Expelled from the Human Respiratory Tract During Expiratory Activities. Journal of Aerosol Science 40: 256-269. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T. and Hui, D. (2018). Additive Manufacturing (3d Printing): A Review of Materials, Methods, Applications and Challenges. Composites Part B: Engineering 143: 172-196. Panda, R., Kundra, P., Saigal, S., Hirolli, D. and Padhihari, P. (2020). Covid-19 Mask: A Modified Anatomical Face Mask. Indian Journal of Anaesthesia 64: S144. Papineni, R.S. and Rosenthal, F.S. (1997). The Size Distribution of Droplets in the Exhaled Breath of Healthy Human Subjects. Journal of Aerosol Medicine 10: 105-116. Patterson, B. and Wood, R. (2019). Is Cough Really Necessary for Tb Transmission? Tuberculosis 117: 31-35. Paul, J.E., Hangan, H. and Hajgato, J. (2009). The Oxymask™ Development and Performance in Healthy Volunteers. Medical Devices (Auckland, NZ) 2: 9. Schacter, E.N., Littner, M.R., Luddy, P. and Beck, G.J. (1980). Monitoring of Oxygen Delivery Systems in Clinical Practice. Critical care medicine 8: 405-409. Sinkule, E.J., Powell, J.B. and Goss, F.L. (2013). Evaluation of N95 Respirator Use with a Surgical Mask Cover: Effects on Breathing Resistance and Inhaled Carbon Dioxide. Annals of occupational hygiene 57: 384-398. Slessarev, M., Somogyi, R., Preiss, D., Vesely, A., Sasano, H. and Fisher, J.A. (2006). Efficiency of Oxygen Administration: Sequential Gas Delivery Versus “Flow into a Cone” Methods. Critical care medicine 34: 829-834. Somogyi, R., Vesely, A.E., Azami, T., Preiss, D., Fisher, J., Correia, J. and Fowler, R.A. (2004). Dispersal of Respiratory Droplets with Open Vs Closed Oxygen Delivery Masks: Implications for the Transmission of Severe Acute Respiratory Syndrome. Chest 125: 1155-1157. Sorg, M.E. and Chatburn, R.L. (2022). Oxygen Delivery with an Open Oxygen Mask and Other Conventional Masks: A Simulation-Based Study. Respiratory Care 67: 316-321. Vuorinen, V., Aarnio, M., Alava, M., Alopaeus, V., Atanasova, N., Auvinen, M., Balasubramanian, N., Bordbar, H., Erästö, P. and Grande, R. (2020). Modelling Aerosol Transport and Virus Exposure with Numerical Simulations in Relation to Sars-Cov-2 Transmission by Inhalation Indoors. Safety Science 130: 104866. Wagstaff, T. and Soni, N. (2007). Performance of Six Types of Oxygen Delivery Devices at Varying Respiratory Rates. Anaesthesia 62: 492-503. Wai, J.K. and Gomersall, C.D. (2011). A Controlled Crossover Human Volunteer Study of the in Vivo Filtration Efficacy of a High-Efficiency Particulate Air–Filtering Oxygen Mask. American journal of infection control 39: 782-784. Wang, X., Jiang, M., Zhou, Z., Gou, J. and Hui, D. (2017). 3d Printing of Polymer Matrix Composites: A Review and Prospective. Composites Part B: Engineering 110: 442-458. Weibel, E.R. (1963). Geometry and Dimensions of Airways of Conductive and Transitory Zones, In Morphometry of the Human Lung, Springer, pp. 110-135. Wexler, H., Aberman, A., Scott, A. and Cooper, J. (1975). Measurement of Intratracheal Oxygen Concentrations During Face Mask Administration of Oxygen: A Modification for Improved Control. Canadian Anaesthetists’ Society Journal 22: 417-431. Yanez, N.D., Fu, A.Y., Treggiari, M.M. and Kirsch, J.R. (2020). Oropharyngeal Oxygen Concentration Is Dependent on the Oxygen Mask System and Sampling Location. Respiratory care 65: 29-35. Yip, Y., Kwok, W. and Gomersall, C. (2013). Performance of a New Oxygen Delivery Device for Potentially Infectious Critically Ill Patients. Anaesthesia 68: 1038-1044. Yu, Y., Benson, S., Cheng, W., Hsiao, J., Liu, Y., Zhuang, Z. and Chen, W. (2012). Digital 3-D Headforms Representative of Chinese Workers. Annals of occupational hygiene 56: 113-122. Zhang, Y.-H., Leung, N.H., Cowling, B.J. and Yang, Z.-F. (2018). Role of Viral Bioaerosols in Nosocomial Infections and Measures for Prevention and Control. Journal of Aerosol Science 117: 200-211. 行政院衛生福利部 (2005). 醫院感染成本支出. 行政院衛生福利部 (2018). 2018 年區域級以上醫院醫療照護相關感染監視年報. 廖秀珍 (2005). 應用3d顱顏資料庫設計呼吸面罩, In 工業工程與工程管理學系, 國立清華大學. 盧靖安 (2019). 新世代呼吸防護具研發, In 職業醫學與工業衛生研究所, 國立臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85272-
dc.description.abstract氧氣面罩做為提高病人吸入氧氣分率的裝置,常用來治療有低血氧症狀的病人。然而,在氧氣面罩使用期間病人無法配戴呼吸防護具,若病人患有呼吸道傳染性疾病,會使醫護人員暴露於染病的風險之中。在提高吸入氧氣分率方面,氧氣面罩上排氣孔設計位置和面罩不密合處都有可能使氧氣面罩的使用無法達到預期的吸入氧氣分率。因此,本研究旨在設計具有防疫效果並且和市售氧氣面罩相比能提供有較高的吸入氧氣分率的防疫型氧氣面罩。 本研究利用繪圖軟體設計防疫型氧氣面罩,面罩分為內層與外層,再使用3D列印技術生成並測試,總共分成四個實驗,分別為面罩密合度測試、面罩捕集效率測試、氧氣分率測試以及面罩內負壓值測試。面罩密合度測試可以探討洩漏處、洩漏面積與密合度的關係,並且可以將密合程度定量;面罩捕集效率測試可以了解不同面罩設計對於病人吐出微粒的捕集效果;氧氣分率測試可以了解使用防疫型氧氣面罩期間不同抽氣流率對於氧氣分率的影響,也可以知道何種面罩設計能有較好的氧氣分率;為了不讓抽氣期間產生過大的負壓造成病人呼吸負擔,同時也會量測面罩內的負壓值。最後將面罩捕集效率測試、氧氣分率測試以及面罩內負壓值測試3項數據進行綜合評估,找出捕集效率最好、氧氣分率最高和負壓值最低的設計。 研究結果顯示洩漏面積和密合度呈反比關係,面罩內外層間距越小(1 mm)、內外層高度差越大(10 mm)會有較好的面罩的捕集效率,透過調整面罩的抽氣範圍與在內層增加分隔呼出氣體與輸入氧氣氣流的隔板可以使氧氣分率提升,此設計也比市售氧氣面罩的氧氣分率還高;提高面罩密合度雖然也會有較好的捕集效率,但同時也會增加面罩內的負壓值,因此密合度值為10是較理想的設計;面罩的洩漏位置和面積也會影響捕集效率和氧氣分率,其中鼻樑處洩漏會降低氧氣分率,下巴處洩漏會降低捕集效率。 本研究透過實驗證實防疫型氧氣面罩可以兼具防疫和提高氧氣分率的功能,透過調整密合度、面罩內外層間距與高度差、面罩抽氣範圍、內層隔板找出較理想的面罩設計,在洩漏處部分,可以在鼻樑處和下巴處增加密合度提高捕集效率和氧氣分率。然而在抽取有效抽氣流率的情況下,目前設計還須提高氧氣流率才能到達市售氧氣面罩(未抽氣)的氧氣分率。zh_TW
dc.description.abstractAn oxygen mask is a device that increases the rate of oxygen inhaled by a patient and is often used to treat patients with hypoxemia. However, using oxygen masks on patients with infectious respiratory diseases can expose healthcare workers to illness. In terms of improving the inhaled oxygen fraction, the design position of the vent holes on the oxygen mask and the poor fit of the mask may make the use of the oxygen mask unable to achieve the expected inhaled oxygen fraction. Therefore, this study aimed to design a preventing infection oxygen mask that could prevent infection and could provide a higher fraction of inhaled oxygen compared to commercially available oxygen masks. This research uses software to design a preventing infection oxygen mask. The mask is divided into an inner layer and an outer layer and then uses 3D printing technology to generate. It is divided into four experiments. The mask fitting test can explore the relationship between the leak, the leakage area, and the fit factor. It also can quantify the fit factor. The mask capture efficiency test can realize the mask’s capture effect on the particles spits out by the patient. The oxygen fraction test can understand the impact of airflow rate on the oxygen fraction. It can also be known which mask design can have a better oxygen fraction. We also measure the negative pressure value in the mask. Finally, the results of the mask collection efficiency test, the oxygen fraction test, and the negative pressure value test are comprehensively evaluated to find out the design with the best capture efficiency, the highest oxygen fraction, and the lowest negative pressure value. The research results show that the leakage area and the fit factor are inversely proportional. The smaller the distance between the inner and outer layers of the mask (1 mm) and the larger the height difference between the inner and outer layers (10 mm), the better the capture efficiency of the mask. The scope and inner layer can increase the oxygen fraction by adding a partition that separates the exhaled gas and the input oxygen flow. This design is also higher than the oxygen fraction of commercially available oxygen masks. However, improving the mask fit factor also has a better capture effect. At the same time, it will increase the negative pressure value in the mask, so a fit factor of about 10 is an ideal design. The leakage position and area of the mask also affect the capture efficiency and oxygen fraction. The leakage at the nose would be reduced oxygen fraction, and chin leaks would reduce capture efficiency. In this study, it was confirmed through experiments that the preventing infection oxygen mask can have both anti-epidemic and oxygen-enhancing functions. By adjusting the fit factor, the distance and height difference between the inner and outer layers of the mask, the air extraction range of the mask, and the inner layer partition, an ideal mask design was found. The fit factor can be increased at the nose and the chin to improve the capture efficiency and oxygen fraction. However, the current design still has to increase the oxygen flow rate to reach the oxygen fraction of a commercially available oxygen mask while sucking an effective extraction flow rate.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:54:21Z (GMT). No. of bitstreams: 1
U0001-2607202213483900.pdf: 2836544 bytes, checksum: 2797050c3749a111aafb91812634bc4a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 致謝 II 摘要 III Abstract V 目錄 VII 表目錄 IX 圖目錄 X 第一章、研究背景與目的 1 1.1 研究背景 1 1.2 研究目的 2 第二章、 文獻回顧 3 2.1 院內感染 3 2.2 生物性氣膠產生與特性 3 2.3 氧氣面罩的使用時機 5 2.4 氧氣面罩使用效果評估指標 6 2.5 氧氣面罩使用問題與改良 6 2.6 面罩內負壓對呼吸阻抗的影響 7 2.7 氧氣濃度量測方式 8 2.8 3D列印技術 8 2.9 中國標準人頭 9 第三章、研究方法與材料 10 3.1 研究架構 10 3.2 防疫型氧氣面罩設計 10 3.2.1 中國標準人頭頭模及擺正 10 3.2.2 防疫型氧氣面罩內層邊緣(面罩與臉部接觸部分)設計 11 3.2.3 防疫型氧氣面罩內層與外層設計 11 3.2.4 防疫型氧氣面罩抽氣口、氧氣入口及邊緣洩漏設計 11 3.2.5 抽氣範圍與內層隔板設計 12 3.2.6 防疫型氧氣面罩生成 12 3.3 防疫型氧氣面罩測試 12 3.3.1 面罩密合度量測 12 3.3.2 面罩捕集效率量測 13 3.3.3 面罩氧氣分率量測與面罩內壓力量測 14 3.4 防疫型氧氣面罩評估 15 第四章、結果討論 16 4.1 面罩邊緣洩漏面積與密合度之關係 16 4.2 面罩密合度、內外層間距、內外層高度差與捕集效率之關係 16 4.3 抽氣範圍、內層隔板有無對氧氣分率、捕集效率之關係 17 4.4 不同密合度在有效抽氣流率下與面罩內負壓值之關係 18 4.5 不同洩漏處對於氧氣分率和捕集效率之關係 18 4.6 調整輸入氧氣流率對氧氣分率影響 19 第五章、結論與建議 20 參考文獻 22
dc.language.isozh-TW
dc.title防疫型氧氣面罩研發zh_TW
dc.titleDevelopment of Oxygen Masks for Preventing Infectionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林文印(Wen-Yinn Lin),蕭大智(Ta-Chih Hsiao),陳志傑(Chih-Chieh Chen),林志威(Chih-Wei Lin)
dc.subject.keyword新冠病毒,氧氣面罩,院內感染,源頭管控,呼吸防護,zh_TW
dc.subject.keywordCOVID-19,oxygen mask,nosocomial infection,source management,respiratory protection,en
dc.relation.page48
dc.identifier.doi10.6342/NTU202201732
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-01
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
dc.date.embargo-lift2024-07-29-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2607202213483900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved