請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85267完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘建源(Chien-Yuan Pan) | |
| dc.contributor.author | Ling Kao | en |
| dc.contributor.author | 高陵 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:54:01Z | - |
| dc.date.copyright | 2022-08-10 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-29 | |
| dc.identifier.citation | Abd‐El‐Basset, E.M. (2016). Effect of Interleukin-1Beta (IL-1β) on the Cortical Neurons Survival and Neurites Outgrowth. Advances in Bioscience and Biotechnology 07, 28-37. Albeltagy, E.S., Elaziz, S.Y.A., Abozaid, S.Y., El Zomor, H.M., and Elhamed, S.S.A. (2021). Interleukin 6, interleukin 17, disease-related and contextual factor association with depression, and its severity in patients with rheumatoid arthritis. Clinical rheumatology 40, 895-904. Beskina, O., Miller, A., Mazzocco-Spezzia, A., Pulina, M.V., and Golovina, V.A. (2007). Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 293, C1103-1111. Calvo-Rodriguez, M., Hou, S.S., Snyder, A.C., Kharitonova, E.K., Russ, A.N., Das, S., Fan, Z., Muzikansky, A., Garcia-Alloza, M., Serrano-Pozo, A., et al. (2020). Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease. Nature communications 11, 2146. Campbell, V., and Lynch, M.A. (2000). The role of ceramide in the modulation of intracellular Ca2+ levels by interleukin 1β in rat cortical synaptosomes. Cytokine 12, 487-490. Carafoli, E. (1991). Calcium pump of the plasma membrane. Physiol Rev 71, 129-153. Catterall, W.A., Perez-Reyes, E., Snutch, T.P., and Striessnig, J. (2005). International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57, 411-425. Chowdhury, T., Allen, M.F., Thorn, T.L., He, Y., and Hewett, S.J. (2018). Interleukin-1β Protects Neurons against Oxidant-Induced Injury via the Promotion of Astrocyte Glutathione Production. Antioxidants 7, 100. Clapham, D.E. (2007). Calcium signaling. Cell 131, 1047-1058. Collins, F., Schmidt, M.M., Guthrie, P., and Kater, S.B. (1991). Sustained increase in intracellular calcium promotes neuronal survival. Paper presented at: The Journal of neuroscience : the official journal of the Society for Neuroscience. Costas-Ferreira, C., and Faro, L.R.F. (2021). Systematic Review of Calcium Channels and Intracellular Calcium Signaling: Relevance to Pesticide Neurotoxicity. International journal of molecular sciences 22. Dawson, A.P. (1997). Calcium signalling: How do IP3 receptors work? Current Biology 7, R544-R547. Dey, K., Bazala, M.A., and Kuznicki, J. (2020). Targeting mitochondrial calcium pathways as a potential treatment against Parkinson's disease. Cell calcium 89, 102216. Di Paolo, N.C., and Shayakhmetov, D.M. (2016). Interleukin 1α and the inflammatory process. Nat Immunol 17, 906-913. Eshra, A., Schmidt, H., Eilers, J., and Hallermann, S. (2021). Calcium dependence of neurotransmitter release at a high fidelity synapse. eLife 10. Fan, Z., Pan, Y.T., Zhang, Z.Y., Yang, H., Yu, S.Y., Zheng, Y., Ma, J.H., and Wang, X.M. (2020). Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson's disease. Journal of neuroinflammation 17, 11. Ferrari, C.C., Pott Godoy, M.C., Tarelli, R., Chertoff, M., Depino, A.M., and Pitossi, F.J. (2006). Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiology of disease 24, 183-193. Galliher-Beckley, A.J., Lan, L.Q., Aono, S., Wang, L., and Shi, J. (2013). Caspase-1 activation and mature interleukin-1β release are uncoupled events in monocytes. World journal of biological chemistry 4, 30-34. Gosavi, S., Whitford, P.C., Jennings, P.A., and Onuchic, J.N. (2008). Extracting function from a beta-trefoil folding motif. Proc Natl Acad Sci U S A 105, 10384-10389. Huang, Y., Smith, D.E., Ibáñez-Sandoval, O., Sims, J.E., and Friedman, W.J. (2011). Neuron-specific effects of interleukin-1β are mediated by a novel isoform of the IL-1 receptor accessory protein. J Neurosci 31, 18048-18059. Junho, C.V.C., Caio-Silva, W., Trentin-Sonoda, M., and Carneiro-Ramos, M.S. (2020). An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Frontiers in Physiology 11. Katayama, T., Sawada, J., Takahashi, K., and Yahara, O. (2020). Cerebrospinal Fluid Biomarkers in Parkinson's Disease: A Critical Overview of the Literature and Meta-Analyses. Brain sciences 10. Li, Y., Liu, L., Barger, S.W., and Griffin, W.S. (2003). Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 1605-1611. Liao, Q.S., Du, Q., Lou, J., Xu, J.Y., and Xie, R. (2019). Roles of Na+/Ca2+ exchanger 1 in digestive system physiology and pathophysiology. World journal of gastroenterology 25, 287-299. Mochida, S. (2020). Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. International journal of molecular sciences 22. Molinaro, P., Cuomo, O., Pignataro, G., Boscia, F., Sirabella, R., Pannaccione, A., Secondo, A., Scorziello, A., Adornetto, A., Gala, R., et al. (2008). Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 1179-1184. Noh, M.-c., Stemkowski, P.L., and Smith, P.A. (2019). Long-term actions of interleukin-1β on K+, Na+ and Ca2+ channel currents in small, IB4-positive dorsal root ganglion neurons; possible relevance to the etiology of neuropathic pain. Journal of Neuroimmunology 332, 198-211. Ong, H.L., and Ambudkar, I.S. (2020). The Endoplasmic Reticulum-Plasma Membrane Junction: A Hub for Agonist Regulation of Ca2+ Entry. Cold Spring Harbor perspectives in biology 12. Patterson, M., Sneyd, J., and Friel, D.D. (2007). Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering. The Journal of general physiology 129, 29-56. Pchitskaya, E., Popugaeva, E., and Bezprozvanny, I. (2018). Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell calcium 70, 87-94. Pedriali, G., Rimessi, A., Sbano, L., Giorgi, C., Wieckowski, M.R., Previati, M., and Pinton, P. (2017). Regulation of Endoplasmic Reticulum-Mitochondria Ca2+ Transfer and Its Importance for Anti-Cancer Therapies. Frontiers in oncology 7, 180. Pozzi, D., Menna, E., Canzi, A., Desiato, G., Mantovani, C., and Matteoli, M. (2018). The Communication Between the Immune and Nervous Systems: The Role of IL-1β in Synaptopathies. Frontiers in Molecular Neuroscience 11. Söderlund, J., Schröder, J., Nordin, C., Samuelsson, M., Walther-Jallow, L., Karlsson, H., Erhardt, S., and Engberg, G. (2009). Activation of brain interleukin-1beta in schizophrenia. Molecular psychiatry 14, 1069-1071. Simons, T.J. (1988). Calcium and neuronal function. Neurosurgical review 11, 119-129. Song, Z., Wang, Y., Zhang, F., Yao, F., and Sun, C. (2019). Calcium Signaling Pathways: Key Pathways in the Regulation of Obesity. Int J Mol Sci 20, 2768. Stemkowski, P.L., Bukhanova-Schulz, N., Baldwin, T., de Chaves, E.P., and Smith, P.A. (2021). Are sensory neurons exquisitely sensitive to interleukin 1β? J Neuroimmunol 354, 577529. Stienstra, R., Tack, C.J., Kanneganti, T.D., Joosten, L.A., and Netea, M.G. (2012). The inflammasome puts obesity in the danger zone. Cell Metab 15, 10-18. Strehler, E.E., and Thayer, S.A. (2018). Evidence for a role of plasma membrane calcium pumps in neurodegenerative disease: Recent developments. Neuroscience letters 663, 39-47. Sukumaran, P., Nascimento Da Conceicao, V., Sun, Y., Ahamad, N., Saraiva, L.R., Selvaraj, S., and Singh, B.B. (2021). Calcium Signaling Regulates Autophagy and Apoptosis. Cells 10. Viscardi, L.H., Imparato, D.O., Bortolini, M.C., and Dalmolin, R.J.S. (2020). Ionotropic Receptors as a Driving Force behind Human Synapse Establishment. Molecular Biology and Evolution 38, 735-744. Wang, C.-E., Li, S., and Li, X.-J. (2010). Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington's disease mice. Molecular Brain 3, 33. Xu, Z., Zhang, D., He, X., Huang, Y., and Shao, H. (2016). Transport of Calcium Ions into Mitochondria. Curr Genomics 17, 215-219. Zhao, F., Li, P., Chen, S.R., Louis, C.F., and Fruen, B.R. (2001). Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. The Journal of biological chemistry 276, 13810-13816. Zhu, G., Okada, M., Yoshida, S., Mori, F., Hirose, S., Wakabayashi, K., and Kaneko, S. (2006). Involvement of Ca2+-induced Ca2+ releasing system in interleukin-1β-associated adenosine release. European Journal of Pharmacology 532, 246-252. 何祐豪 (2019). 探討NLRP3-Caspase 1 機制在鋅離子引發大鼠初代培養神經元死亡的角色. In 生命科學系 (國立臺灣大學), pp. 1-62. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85267 | - |
| dc.description.abstract | 白介素-1β (interleukin-1 β, IL-1β) 是一種促進發炎的細胞激素,在免疫和發炎反應中擔任重要角色。研究指出,在罹患慢性神經退化疾病患者的腦脊髓液中,相對較於一般人有較高濃度的IL-1β。然而,研究重心多在於IL-1β與細胞發炎機制間的交互作用,及對神經細胞存活的研究,而較少討論IL-1β對神經傳導的影響。鈣離子是神經傳導機制中重要的信息分子,調控神經細胞許多活性。在本研究中,利用鈣離子影像技術,研究IL-1β刺激並影響初代培養大鼠胚胎皮質神經細胞,細胞內鈣離子濃度 ([Ca2+]i)的變化。先將鈣離子螢光染劑Fura-2送入神經細胞中,再以不同濃度IL-1β刺激,觀測鈣離子螢光的變化ΔRatio。結果顯示ΔRatio會隨IL-1刺激濃度提高而增加,呈劑量依賴性曲線 (dose-dependent),EC50為0.22±0.21 ng/ml;但相同濃度範圍下的IL-1α,卻無法引起鈣離子反應。使用IL-1β受體的抑制劑IL-1RA (1 ng/mL),可顯著抑制ΔRatio變化,而IL-1受體訊息途徑的抑制劑,ST2825 (10 µM),可幾乎完全抑制IL-1β引起的鈣離子反應。移除胞外鈣離子,或是去除胞內鈣庫中的鈣離子,也都可抑制IL-1β所引起的鈣離子反應。在AMPA受體抑制劑,DNQX (1 µM)、神經傳導物質釋放抑制劑,tetanus toxin (1 µM)、或是鈉離子通道抑制劑,tetrodotoxin (1 µM)處理下,IL-1β皆無法引起鈣離子反應。這些結果表明,在發炎反應過程中,IL-1β可能通過IL-1R誘導神經傳導物質的釋放,從而刺激突觸後神經元並升高[Ca2+]i,從而在神經迴路中產生正回饋。因此,控制 IL-1β不僅可以調節神經發炎,還可以調節突觸活動。 | zh_TW |
| dc.description.abstract | Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that belongs to the IL-1 family and plays a crucial role in inflammatory responses. The cerebrospinal fluid of patients with chronic neurodegenerative diseases usually contains a higher level of IL-1. Most studies focus on the effects of IL-1β on neuron viability; it is not clear whether IL-1β affects the neurotransmission in the nervous system. In this study, we loaded the primary cultured rat embryonic cortical neurons with Fura-2, a Ca2+ sensitive fluorescence dye, and characterized how IL-1β affects the intracellular Ca2+ concentration ([Ca2+]i). The results showed that IL-1β but not IL-1α elevated the [Ca2+]i and the EC50 was 0.22 ± 0.21 ng/mL. IL-1RA (1 ng/mL), an antagonist of the IL-1 receptor, and ST2825 (10 µM), an inhibitor blocking the signaling pathway of IL1R, could significantly suppress this elevation. Removing extracellular Ca2+ and depletion of the intracellular Ca2+ stores inhibited IL-1 evoked Ca2+ responses significantly. In the presence of DNQX (1 µM), an inhibitor of AMPA receptors, tetanus toxin (1 µM), an inhibitor of neurotransmitter release, or tetrodotoxin (1 µM), a blocker of voltage-gated Na+ channels, IL-1β did not elicit a significant elevation in [Ca2+]i. These results suggest that, during the inflammatory response, IL-1β may induce the release of neurotransmitters via the IL-1R to stimulate the post-synaptic neurons and elevate the [Ca2+]i, resulting in positive feedback in neural circuits. Therefore, controlling the level of IL-1 does not only regulate neuroinflammation but synaptic activities as well. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:54:01Z (GMT). No. of bitstreams: 1 U0001-2807202211114900.pdf: 1006881 bytes, checksum: 226224274573191846980d2bd39ef930 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i Acknowledgment ii 摘要 iii Abstract iv Catalog vi 1. Introduction 1 1.1. Physiological roles of calcium signaling 1 1.2. Neuronal calcium signaling 2 1.2.1. Voltage-gated Ca2+ channels 3 1.2.2. Ionotropic neurotransmitter receptors 3 1.2.3. Ca2+ pump 4 1.2.4. Na+/Ca2+ exchanger 5 1.2.5. ER Ca2+ stores 5 1.2.6. Mitochondria stores 6 1.2.7. Ca2+ binding proteins 6 1.3. The IL-1 family 7 1.4. IL-1β signaling pathway 9 1.5. The effect of IL-1β on neuronal survival and degeneration 10 1.6. IL-1β and Ca2+ signaling 11 1.7. Aims 11 2. Material and methods 13 2.1. Chemicals 13 2.2. Cell culture 13 2.3. Calcium imaging 14 2.4. Drug treatment 15 2.5. Data analysis 15 3. Results 16 3.1. IL-1β elevates [Ca2+]i in a dose-dependent manner 16 3.2. IL-1β binds to IL-1R and activates MYD88 to increase [Ca2+]i 17 3.3. Extracellular Ca2+ is necessary for the IL-1-induced elevation of [Ca2+]i 18 3.4. Depolarization and excitatory synaptic transmission are necessary for the IL-1-induced elevation of [Ca2+]i 19 3.5. Neurotransmitters released from presynaptic terminals are crucial to the IL-1-induced elevation of [Ca2+]i 20 3.6. Intracellular Ca2+ stores play a facilitative role. 21 3.7. IP3 pathway is involved in the elevation of [Ca2+]i 22 4. Discussion 24 1. IL-1R plays a key role in IL-1β signaling pathway 24 2. Neurotransmitters 25 5. References 26 6. Table and Figures 31 | |
| dc.language.iso | en | |
| dc.subject | AMPA受體 | zh_TW |
| dc.subject | 胞內鈣庫 | zh_TW |
| dc.subject | MyD88 | zh_TW |
| dc.subject | IL-1β | zh_TW |
| dc.subject | 鈣離子恆定 | zh_TW |
| dc.subject | 神經傳導 | zh_TW |
| dc.subject | neurotransmission | en |
| dc.subject | AMPA receptor | en |
| dc.subject | Ca2+ homeostasis | en |
| dc.subject | intracellular Ca2+ store | en |
| dc.subject | MyD88 | en |
| dc.subject | interleukin-1β | en |
| dc.title | 研究白介素-1β刺激提升初代培養大鼠胚胎皮質神經細胞胞內鈣離子濃度的訊息途徑 | zh_TW |
| dc.title | Characterization of the Signaling Cascade Underlying the IL-1β-induced Elevation of [Ca2+]i in Primary-cultured Rat Embryonic Cortical Neurons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張芳嘉(Fang-Chia Chang),姚季光(Chi-Kuang Yao) | |
| dc.subject.keyword | AMPA受體,鈣離子恆定,IL-1β,胞內鈣庫,MyD88,神經傳導, | zh_TW |
| dc.subject.keyword | AMPA receptor,Ca2+ homeostasis,interleukin-1β,intracellular Ca2+ store,MyD88,neurotransmission, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU202201817 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| dc.date.embargo-lift | 2022-08-10 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202211114900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 983.28 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
