Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85259
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王永松(Yung-Song Wang)
dc.contributor.authorHui-Kai Hsuen
dc.contributor.author徐暉凱zh_TW
dc.date.accessioned2023-03-19T22:53:32Z-
dc.date.copyright2022-08-02
dc.date.issued2022
dc.date.submitted2022-07-31
dc.identifier.citationAgalou, A., Thrapsianiotis, M., Angelis, A., Papakyriakou, A., Skaltsounis, A. L., Aligiannis, N., & Beis, D. (2018). Identification of Novel Melanin Synthesis Inhibitors From Crataegus pycnoloba Using an in Vivo Zebrafish Phenotypic Assay. Frontiers in Pharmacology, 9, 265. Agarwal, S., & Rao, Α. V. (2000). Carotenoids and Chronic Diseases. Drug Metabolism and Drug Interactions, 17(1-4), 189-210. Aluru, N. (2017). Epigenetic effects of environmental chemicals: Insights from zebrafish. Current Opinion in Toxicology, 6, 26-33. Aminin, D. L., Chaykina, E. L., Agafonova, I. G., Avilov, S. A., Kalinin, V. I., & Stonik, V. A. (2010). Antitumor activity of the immunomodulatory lead Cumaside. International Immunopharmacology, 10(6), 648-654. Ando, H., Kondoh, H., Ichihashi, M., & Hearing, V. J. (2007). Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase. Journal of Investigative Dermatology, 127(4), 751-761. Ando, H., Watabe, H., Valencia, J. C., Yasumoto, K.-I., Furumura, M., Funasaka, Y., Oka, M., Ichihashi, M., & Hearing, V. J. (2004). Fatty Acids Regulate Pigmentation via Proteasomal Degradation of Tyrosinase. Journal of Biological Chemistry, 279(15), 15427-15433. Bahrami, Y., & Franco, C. (2016). Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades. Marine Drugs, 14(8), 147. Baumann, L., Segner, H., Ros, A., Knapen, D., & Vergauwen, L. (2019). Thyroid Hormone Disruptors Interfere with Molecular Pathways of Eye Development and Function in Zebrafish. International Journal of Molecular Sciences, 20(7), 1543. Bi, J., Li, Y., Cheng, S., Dong, X., Kamal, T., Zhou, D., Li, D., Jiang, P., Zhu, B.-W., & Tan, M. (2016). Changes in Body Wall of Sea Cucumber (Stichopus japonicus) during a two-Step Heating Process Assessed by Rheology, LF-NMR, and Texture Profile Analysis. Food Biophysics, 11(3), 257-265. Bordbar, S., Anwar, F., & Saari, N. (2011). High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review. Marine Drugs, 9(10), 1761-1805. Cabanes, J., Chazarra, S., & Garcia-Carmona, F. (1994). Kojic Acid, a Cosmetic Skin Whitening Agent, is a Slow-binding Inhibitor of Catecholase Activity of Tyrosinase. Journal of Pharmacy and Pharmacology, 46(12), 982-985. Chan, C. F., Huang, C. C., Lee, M. Y., & Lin, Y. S. (2014). Fermented Broth in Tyrosinase- and Melanogenesis Inhibition. Molecules, 19(9), 13122-13135. Chandika, P., Ko, S. C., Oh, G. W., Heo, S. Y., Nguyen, V. T., Jeon, Y. J., Lee, B., Jang, C. H., Kim, G., Park, W. S., et al. (2015). Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. International Journal of Biological Macromolecules, 81, 504-513. Chang, N. F., Chen, Y. S., Lin, Y. J., Tai, T. H., Chen, A. N., Huang, C. H., & Lin, C. C. (2017). Study of hydroquinone mediated cytotoxicity and hypopigmentation effects from UVB-Irradiated arbutin and deoxyArbutin. International Journal of Molecular Sciences, 18(5), 969. Chen, D., Yang, X., Cao, W., Guo, Y., Sun, Y., & Xiu, Z. (2015). Three-liquid-phase salting-out extraction of effective components from waste liquor of processing sea cucumber. Food and Bioproducts Processing, 96, 99-105. Chen, J. (2003). Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Information Bulletin, 18. Chen, J. S., Wei, C. I., & Marshall, M. R. (1991). Inhibition mechanism of kojic acid on polyphenol oxidase. Journal of Agricultural and Food Chemistry, 39(11), 1897-1901. Chen, Y. M., Su, W. C., Li, C., Shi, Y., Chen, Q. X., Zheng, J., Tang, D. L., Chen, S. M., & Wang, Q. (2019). Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. International Journal of Biological Macromolecules, 123, 723-731. Conand, C. (1990). The fishery resources of Pacific island countries. Part 2. Holothurians, pp. 143. Conand, C. (2004). Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES): Conservation and trade in sea cucumbers. Dai, Y. L., Kim, E. A., Luo, H. M., Jiang, Y. F., Oh, J. Y., Heo, S. J., & Jeon, Y. J. (2020). Characterization and anti-tumor activity of saponin-rich fractions of South Korean sea cucumbers (Apostichopus japonicus). Journal of Food Science and Technology, 57(6), 2283-2292. Deal, M. S., Hay, M. E., Wilson, D., & Fenical, W. (2003). Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. Oecologia, 136(1), 107-114. Dooley, C. M., Mongera, A., Walderich, B., & Nüsslein-Volhard, C. (2013). On the embryonic origin of adult melanophores: the role of ErbB and Kit signalling in establishing melanophore stem cells in zebrafish. Development, 140(5), 1003-1013. Dubois, K. P., & Erway, W. F. (1946). Studies on the mechanism of action of thiourea and related compounds. Journal of Biological Chemistry, 165(2), 711-721. Easterbrook, C., & Maddern, G. (2008). Porcine and bovine surgical products: Jewish, Muslim, and Hindu perspectives. Archive of surgery, 143(4), 366. Elmer Rico E. Mojica, & Merca, F. E. (2005). Lectin from the Body Walls of Black Sea Cucumber (Holothuria atra Jaeger). Journal of Biological Sciences, 5, 472-477. Erdmann, K., Cheung, B. W. Y., & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of Nutritional Biochemistry, 19(10), 643-654. Fenwick, G. R., Price, K. R., Tsukamoto, C., & Okubo, K. (1991). Toxic Substances in Crop Plants Saponins. In: J.P.F. D’Mello, C.M. Duffus, and J.H. Duffus, Eds. Toxic Substances in Crop Plants. The Royal Society of Chemistry, Cambridge, pp. 285–327. Fujihara, K., Takahashi, K., Koyama, K., & Kinoshita, K. (2017). Triterpenoid saponins from Polaskia chichipe Backbg. and their inhibitory or promotional effects on the melanogenesis of B16 melanoma cells. Journal of Natural Medicines, 71(4), 606-616. Güçlü Üstündağ, Ö., & Mazza, G. (2007). Saponins: Properties, Applications and Processing. Critical reviews in food science and nutrition, 47, 231-258. G.P., S. (2003). Encyclopedia of Food Sciences and Nutrition. Gallo, C., Landi, S., D’Ippolito, G., Nuzzo, G., Manzo, E., Sardo, A., & Fontana, A. (2020). Diatoms synthesize sterols by inclusion of animal and fungal genes in the plant pathway. Scientific Reports, 10(1), 10:4204. Goad, L. J., Garneau, F. X., Simard, J. L., Apsimon, J. W., & Girard, M. (1985). Isolation ofΔ9(11)-sterols from the sea cucumber psolusfabricii. Implications for holothurin biosynthesis. Tetrahedron Letters, 26, 3513-3516. Guo, L., Gao, Z., Zhang, L., Guo, F., Chen, Y., Li, Y., & Huang, C. (2016). Saponin-enriched sea cucumber extracts exhibit an antiobesity effect through inhibition of pancreatic lipase activity and upregulation of LXR-β signaling. Pharmaceutical Biology, 54(8), 1312-1325. Hall, A. M., & Orlow, S. J. (2005). Degradation of tyrosinase induced by phenylthiourea occurs following Golgi maturation. Pigment Cell Research, 18(2), 122-129. Hisaoka, K. K., & Battle, H. I. (1958). The normal developmental stages of the zebrafish, brachydanio rerio (hamilton-buchanan). Journal of Morphology, 102(2), 311-327. Huang, R., Mendis, E., Rajapakse, N., & Kim, S. K. (2006). Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sciences, 78(20), 2399-2408. Husni, A. (2014). Effect of extraction methods on antifungal activity of sea cucumber (Stichopus japonicus) Agritech, 34, 1-7. Husni, A., Jeon, J. S., Um, B. H., Han, N. S., & Chung, D. (2011). Tyrosinase inhibition by water and ethanol extracts of a Far Eastern sea cucumber, Stichopus japonicus. Journal of the Science of Food and Agriculture, 91(9), 1541-1547. Iñiguez-Martinez, A. M. D. M., Guerra-Rivas, G., Rios, T., & Quijano, L. (2005). Triterpenoid Oligoglycosides from the Sea Cucumber Stichopus parvimensis. Journal of Natural Products, 68(11), 1669-1673. Jeong, H., Yu, S. M., & Kim, S. (2019). Inhibitory effects on melanogenesis by thymoquinone are mediated through the β‑catenin pathway in B16F10 mouse melanoma cells. International Journal of Oncology, 56, 379-389. Jesumani, V., Du, H., Pei, P., Zheng, C., Cheong, K. L., & Huang, N. (2019). Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property. International Journal of Biological Macromolecules, 140, 216-224. K., S., K., K., R., B. A., B., D. K., John, A., & lakshmanan, P. (2015). Collagen: Animal Sources and Biomedical Application (Vol. 5). Kariya, Y., Mulloy, B., Imai, K., Tominaga, A., Kaneko, T., Asari, A., Suzuki, K., Masuda, H., Kyogashima, M., & Ishii, T. (2004). Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis. Carbohydrate Research 339(7), 1339-1346. Karlsson, J., Von Hofsten, J., & Olsson, P. E. (2001). Generating Transparent Zebrafish: A Refined Method to Improve Detection of Gene Expression During Embryonic Development. Marine Biotechnology, 3(6), 0522-0527. Kawabata, T., Cui, M. Y., Hasegawa, T., Takano, F., & Ohta, T. (2011). Anti-Inflammatory and Anti-Melanogenic Steroidal Saponin Glycosides from Fenugreek (Trigonella foenum-graecumL.) Seeds. Planta Medica, 77(07), 705-710. Kerr, R. G., & Chen, Z. (1995). In Vivo and In Vitro Biosynthesis of Saponins in Sea Cucumbers. Journal of Natural Products, 58(2), 172-176. Kim, S. K. (2012). Marine Pharmacognosy:Trends and Application. CRC Press, pp. 1-6. Kim, S. K., Thomas, N. V., & Li, X. (2011). Anticancer Compounds from Marine Macroalgae and Their Application as Medicinal Foods. In S.-K. Kim (Ed.), Advances in Food and Nutrition Research (Vol. 64, pp. 213-224). Academic Press. Koo, J. H., Rhee, K. S., Koh, H. W., Jang, H. Y., Park, B. H., & Park, J. W. (2012). Guggulsterone inhibits melanogenesis in B16 murine melanoma cells by downregulating tyrosinase expression. International Journal of Molecular Medicine, 30(4), 974-978. Kulkeaw, K., Ishitani, T., Kanemaru, T., Ivanovski, O., Nakagawa, M., Mizuochi, C., Horio, Y., & Sugiyama, D. (2011). Cold exposure down-regulates zebrafish pigmentation. Genes to Cells, 16(4), 358-367. Lamason, R. L., Mohideen, M. A., Mest, J. R., Wong, A. C., Norton, H. L., Aros, M. C., Jurynec, M. J., Mao, X., Humphreville, V. R., Humbert, J. E., et al. (2005). SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science, 310(5755), 1782-1786. Le, A., Parks, S., Nguyen, M., & Roach, P. (2018). Improving the vanillin-sulphuric acid method for quantifying total saponins. Technologies, 6, 84. Lee, J., Yun, C., Hur, J., & Lee, S. (2018). Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Marine Drugs, 16(4), 121. Lee, N. H., Jae, W., Koh, H. B., Kim, M. J., Yoon, W. J., & Hyun, C. G. (2010). Effect of Korean red sea cucumber ( Stichopus japonicus ) on melanogenic protein expression in murine B16 melanoma. International Journal of Pharmacology, 6, 37-42. Li, T. S. C., Mazza, G., Cottrell, A. C., & Gao, L. (1996). Ginsenosides in roots and leaves of American ginseng. Journal of Agricultural and Food Chemistry, 44(3), 717-720. Li, Z., Ptak, D., Zhang, L., Walls, E. K., Zhong, W., & Leung, Y. F. (2012). Phenylthiourea specifically reduces zebrafish eye size. PLoS ONE, 7(6), e40132. Liu, X., Chen, L., Zhang, Y., Xin, X., Qi, L., Jin, M., Guan, Y., Gao, Z., & Huang, W. (2021). Enhancing anti-melanoma outcomes in mice using novel chitooligosaccharide nanoparticles loaded with therapeutic survivin-targeted siRNA. European Journal of Pharmaceutical Sciences, 158, 105641. Liu, X., Sun, Z., Zhang, M., Meng, X., Xia, X., Yuan, W., Xue, F., & Liu, C. (2012). Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus. Carbohydrate Polymers, 90(4), 1664-1670. Lu, Y., & Wang, B. L. (2009). The research progress of antitumorous effectiveness of Stichopus japonicus acid mucopolysaccharide in north of China. The American Journal of the Medical Sciences, 337(3), 195-198. Maeda, K., & Fukuda, M. (1996). Arbutin: mechanism of its depigmenting action in human melanocyte culture. Journal of Pharmacology and Experimental Therapeutics, 276(2), 765-769. Mamelona, J., Pelletier, É., Girard-Lalancette, K., Legault, J., Karboune, S., & Kermasha, S. (2007). Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chemistry, 104(3), 1040-1047. Martín, R. S., & Briones, R. (1999). Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Economic Botany, 53(3), 302-311. Miyamoto, T., Togawa, K., Higuchi, R., Komori, T., & Sasaki, T. (1990). Constituents of holothuroidea, II. Six newly identified biologically active triterpenoid glycoside sulfates from the sea cucumber Cucumaria echinata. Liebigs Annalen der Chemie, 1990(5), 453-460. Mojica, E. R., & Merca, F. (2004). Lectin from the body walls of black sea cucumber (Holothuria atra Jaeger). Philippine Journal of Science, 133, 77-85. Mojica, E. R. E., & Merca, F. E. (2005). Isolation and partial characterization of a lectin from the internal organs of the sea cucumber (Holothuria scabra Jäger). International Journal of Zoological Research, 1, 59-65. Moses, T., Papadopoulou, K., & Osbourn, A. (2014). Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Critical reviews in biochemistry and molecular biology, 49, 1-24. Mourao, P. A. S., & Bastos, I. G. (1987). Highly acidic glycans from sea cucumbers. Isolation and fractionation of fucose-rich sulfated polysaccharides from the body wall of Ludwigothurea grisea. European Journal of Biochemistry, 166(3), 639-645. Mourão, P. (1999). Searching for alternatives to heparin sulfated fucans from marine invertebrates. Trends in Cardiovascular Medicine, 9(8), 225-232. Mourão, P. A. S., Boisson Vidal, C., Tapon Bretaudière, J., Drouet, B., Bros, A., & Fischer, A.-M. (2001). Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm. Thrombosis Research, 102(2), 167-176. Mourão, P. A. S., Pereira, M. S., Pavão, M. S. G., Mulloy, B., Tollefsen, D. M., Mowinckel, M.-C., & Abildgaard, U. (1996). Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Journal of Biological Chemistry, 271(39), 23973-23984. Nagase, H., Enjyoji, K., Minamiguchi, K., Kitazato, K., Kitazato, K., Saito, H., & Kato, H. (1995). Depolymerized holothurian glycosaminoglycan with novel anticoagulant actions: antithrombin III- and heparin cofactor II-independent inhibition of factor X activation by factor IXa-factor VIIIa complex and heparin cofactor II-dependent inhibition of thrombin. Blood, 85(6), 1527-1534. Nakagawa, M., Kawai, K., & Kawai, K. (1995). Contact allergy to kojic acid in skin care products. Contact Dermatitis, 32(1), 9-13. Nigrelli, R. F. (1952). The effects of holothurin on fish, and mice with Sarcoma 180. Zoologica : scientific contributions of the New York Zoological Society., 37(8), 89-90. Oleszek, W., Sitek, M., Stochmal, A., Piacente, S., Pizza, C., & Cheeke, P. (2001). Steroidal saponins of Yucca schidigera Roezl. Journal of Agricultural and Food Chemistry, 49(9), 4392-4396. Ortiz-Ruiz, C. V., Berna, J., Tudela, J., Varon, R., & Garcia-Canovas, F. (2016). Action of ellagic acid on the melanin biosynthesis pathway. Journal of Dermatological Science, 82(2), 115-122. Pacheco, R. G., Vicente, C. P., Zancan, P., & Mourão, P. A. S. (2000). Different antithrombotic mechanisms among glycosaminoglycans revealed with a new fucosylated chondroitin sulfate from an echinoderm. Blood Coagulation & Fibrinolysis, 11(6), 563-573. Pham, N. K., Bui, H. T., Tran, T. H., Hoang, T. N. A., Vu, T. H., Do, D. T., Kim, Y. H., Song, S. B., To, D. C., & Nguyen, M. C. (2021). Dammarane triterpenes and phytosterols from Dysoxylum tpongense Pierre and their anti-inflammatory activity against liver X receptors and NF-κB activation. Steroids, 175, 108902. Pislyagin, E. A., Manzhulo, I. V., Gorpenchenko, T. Y., Dmitrenok, P. S., Avilov, S. A., Silchenko, A. S., Wang, Y. M., & Aminin, D. L. (2017). Cucumarioside A₂-2 causes macrophage activation in mouse spleen. Marine Drugs, 15(11), 341. Pomin, V. H. (2014). Anticoagulant motifs of marine sulfated glycans. Glycoconjugate Journal, 31(5), 341-344. Price, K. R., Johnson, I. T., & Fenwick, G. R. (1987). The chemistry and biological significance of saponins in foods and feedingstuffs. Critical Reviews in Food Science & Nutrition, 26(1), 27-135. Qi, H., Dong, X. F., Zhao, Y. P., Li, N., Fu, H., Feng, D. D., Liu, L., & Yu, C.-X. (2016). ROS production in homogenate from the body wall of sea cucumber Stichopus japonicus under UVA irradiation: ESR spin-trapping study. Food Chemistry, 192, 358-362. Qi, H., Ji, X., Liu, S., Feng, D., Dong, X., He, B., Srinivas, J., & Yu, C. (2017). Antioxidant and anti-dyslipidemic effects of polysaccharidic extract from sea cucumber processing liquor. Electronic Journal of Biotechnology, 28, 1-6. Quéguineur, B., Goya, L., Ramos, S., Martín, M. A., Mateos, R., & Bravo, L. (2012). Phloroglucinol: Antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food and Chemical Toxicology, 50(8), 2886-2893. Rafiuddin Ahmed, M., Venkateshwarlu, U., & Jayakumar, R. (2004). Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials, 25(13), 2585-2594. Ranka, D., Aswar, M., Aswar, U., & Bodhankar, S. (2013). Diuretic potential of aqueous extract of roots of Solanum xanthocarpum Schrad & Wendl, a preliminary study. Indian Journal of Experimental Biology, 51(10), 833-839. Saleem, M., Javed, F., Asif, M., Kashif Baig, M., & Arif, M. (2019). HPLC analysis and in vivo renoprotective evaluation of hydroalcoholic extract of Cucumis melo seeds in gentamicin-induced renal damage. Medicina, 55(4), 107. Sauvaire, Y., Baissac, Y., Leconte, O., Petit, P., & Ribes, G. (1996). Steroid saponins from fenugreek and some of their biological properties. Advances in Experimental Medicine and Biology, 405, 37-46. Seedevi, P., Moovendhan, M., Sudharsan, S., Vasanthkumar, S., Srinivasan, A., Vairamani, S., & Shanmugam, A. (2015). Structural characterization and bioactivities of sulfated polysaccharide from Monostroma oxyspermum. International Journal of Biological Macromolecules, 72, 1459-1465. Shiell, G. (2005). Field observations of juvenile sea cucumbers. SPC Beche-der-mer Information Bulletin. Siahaan, E., Pangestuti, R., Munandar, H., & Kim, S.-K. (2017). Cosmeceuticals properties of sea cucumbers: prospects and trends. Cosmetics, 4(3), 26. Sugawara, T., Zaima, N., Yamamoto, A., Sakai, S., Noguchi, R., & Hirata, T. (2006). Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells. Bioscience, Biotechnology, and Biochemistry, 70(12), 2906-2912. Suginta, W., Sritho, N., Ranok, A., Bulmer, D. M., Kitaoku, Y., Van Den Berg, B., & Fukamizo, T. (2018). Structure and function of a novel periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria. Journal of Biological Chemistry, 293(14), 5150-5159. Taiyeb-Ali, T. B., Zainuddin, S. L. A., Swaminathan, D., & Yaacob, H. (2003). Efficacy of 'Gamadent' toothpaste on the healing of gingival tissues: a preliminary report. Journal of Oral Science, 45(3), 153-159. Tang, L., Chen, Y., Jiang, Z., Zhong, S., Chen, W., Zheng, F., & Shi, G. (2017). Purification, partial characterization and bioactivity of sulfated polysaccharides from Grateloupia livida. International Journal of Biological Macromolecules, 94, 642-652. Triantaphyllou, K., Blekas, G., & Boskou, D. (2001). Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. International Journal of Food Sciences and Nutrition, 52(4), 313-317. Trivedi, M. K., Yang, F. C., & Cho, B. K. (2017). A review of laser and light therapy in melasma. International Journal of Women's Dermatology, 3(1), 11-20. Vieira, R. P., Mulloy, B., & Mourão, P. A. (1991). Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues. Journal of Biological Chemistry, 266(21), 13530-13536. Vieira, R. P., Pedrosa, C., & Mourao, P. A. S. (1993). Extensive heterogeneity of proteoglycans bearing fucose-branched chondroitin sulfate extracted from the connective tissue of sea cucumber. Biochemistry, 32(9), 2254-2262. Wang, H., Sui, H., & Zhu, B. (2019). Ellagic acid, a plant phenolic compound, activates cyclooxygenase‑mediated prostaglandin production. Experimental and Therapeutic Medicine, 18, 987-996. Wang, L., Oh, J. Y., Jayawardena, T. U., Jeon, Y.-J., & Ryu, B. (2020). Anti-inflammatory and anti-melanogenesis activities of sulfated polysaccharides isolated from Hizikia fusiforme: short communication. International Journal of Biological Macromolecules, 142, 545-550. Wang, L., Wang, X., Wu, H., & Liu, R. (2014). Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Marine Drugs, 12(9), 4984-5020. Wen, M., Fu, X., Han, X., Hu, X., Dong, P., Xu, J., Xue, Y., Wang, J., Xue, C., & Wang, Y. (2016). Sea cucumber saponin echinoside A (EA) stimulates hepatic fatty acid β-oxidation and suppresses fatty acid biosynthesis coupling in a diurnal pattern. Journal of Nutritional Science and Vitaminology, 62(3), 170-177. Westerfield, M. (2000). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). Wu, X. f., & Hammer, J. A. (2014). Melanosome transfer: it is best to give and receive. Current Opinion in Cell Biology, 29, 1-7. Xu, H. J., Liu, C. h., Xue, Y., Xue, C. H., & Wang, Y. m. (2011). The effect of dietary sea cucumber saponin on hyperuricemia in mice. Chinese Pharmacological Bulletin, 27, 1064-1067. Zhai, X., Li, C., Ren, D., Wang, J., Ma, C., & Abd El-Aty, A. M. (2021). The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: A comprehensive review. Carbohydrate Polymers, 266, 118-132. Zhang, B., Ma, S., Rachmin, I., He, M., Baral, P., Choi, S., Gonçalves, W. A., Shwartz, Y., Fast, E. M., Su, Y., et al. (2020). Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature, 577(7792), 676-681. Zhang, H., & Zhou, Q. (2013). Tyrosinase inhibitory effects and antioxidative activities of saponins from Xanthoceras sorbifolia nutshell. PLoS ONE, 8(8), e70090. Zhou, J., Ren, T., Li, Y., Cheng, A., Xie, W., Xu, L., Peng, L., Lin, J., Lian, L., Diao, Y., et al. (2017). Oleoylethanolamide inhibits α-melanocyte stimulating hormone-stimulated melanogenesis via ERK, Akt and CREB signaling pathways in B16 melanoma cells. Oncotarget, 8(34), 56868-56879. Zhu, B. W., Zhou, D. Y., Li, T., Yan, S., Yang, J.-F., Li, D.-M., Dong, X. P., & Murata, Y. (2010). Chemical composition and free radical scavenging activities of a sulphated polysaccharide extracted from abalone gonad (Haliotis Discus Hannai Ino). Food Chemistry, 121(3), 712-718. 吳敏華. (2012). 蜆水萃物與小球藻脂溶性抗氧化物對吳郭魚攝取後血脂之影響. 國立臺灣海洋大學 碩士論文. 黃巧淇. (2001). 文蛤熱水萃取物醣蛋白之細胞凋亡誘導機制. 國立臺灣海洋大學 碩士論文. 黃聖佳. (2016). 蜆(Corbicula fluminea)水萃物與蜆肉水解物對吳郭魚血管壁的保護作用. 國立臺灣海洋大學 博士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85259-
dc.description.abstract海參乾貨製程中水萃物過去常作為廢棄物丟棄,有研究發現其中成分比例和活體海參相仿。本實驗分別使用台灣水域與日本水域之仿刺參在加工後產生的水萃物(sea cucumber aqueous extract;SCAE)經凍結乾燥處理後回溶,再對小鼠黑色素瘤細胞株(B16F10 cell) 與斑馬魚胚胎進行實驗,觀察抑制黑色素生成的效果,記錄半致死劑量、黑色素生成量、黑色素生成相關蛋白質與基因表現量,最後進行定性與定量。實驗結果顯示在凍結乾燥後的SCAE-TW或SCAE-JP對細胞毒性實驗發現100μg/mL以上濃度均對細胞與斑馬魚胚胎產生傷害使活存率下降,而10μg/mL以下濃度細胞與斑馬魚胚胎活存率和控制組相近且沒有顯著差異,計算其半致死濃度(LC50)分別為54μg/mL與201μg/mL。細胞實驗結果顯示,隨著SCAE-TW與SCAE-JP使用濃度越高,實驗組黑色素生成量與正控制組相比顯著減少。酪胺酸脢活性同樣隨著SCAE-TW與SCAE-JP使用濃度越高,與正控制組別相比也顯著減少。細胞之黑色素生成相關基因MITF和TYR在SCAE-TW與SCAE-JP在 10μg/mL、1μg/mL、0.1μg/mL三種劑量下表現量與正控制組相比均有顯著下降;而TRP1與TRP2基因與正控制組相比雖然有下降趨勢,卻沒有顯著統計差異。斑馬魚實驗結果顯示黑色素生成量在SCAE-TW與SCAE-JP 於10μg/mL濃度下與控制組相比有顯著下降,酪胺酸脢活性實驗結果類似於細胞實驗,顯示隨著使用的SCAE濃度越高,產生量顯著減少。SCAE-TW或SCAE-JP皆具有易起泡且泡沫不易消退的特性,由foam test的泡沫穩定性與saponin定量實驗結果得知,推測日本海域的仿刺參的水煮液之saponin成分含量皆高於台灣海域仿刺參水煮液,並在與皂皮樹saponin標準品建立之標準曲線進行外插法計算後,推算SCAE-TW與SCAE-JP每100mg分別含有3.45mg和6.48mg的saponin化合物。SCAE-TW與SCAE-JP經過本篇研究證實SCAE可能含有皂素化合物成分,藉由抑制黑色素生成途徑之相關基因表現與蛋白質活性,達到抑制黑色素生成之效果。zh_TW
dc.description.abstractThe sea cucumber is an economically important fishery species and have long been used as food and traditional medicine. In the processing of sea cucumber dry product, the aqueous extract byproducts are discarded as waste, but some studies had indicated that the composition of aqueous extract is similar to live sea cucumber itself. In the present study, we first conduct experiments on the B16F10 cell line and zebrafish embryos, then investigated the property of sea cucumber (Apostichopus japonicus) aqueous extract (SCAE), obtained from Taiwan and Japan aquafood factory. The survival rate experiments indicate that SCAE-TW or SCAE-JP concentration after lyophilization treatment at 100μg/mL or above is harmful to the B16F10 cells and zebrafish embryos, and their lethal concentration 50% are 54μg/mL and 201μg/mL, respectively;on the contrary, concentration at 10μg/mL or lower then show no significant difference to control group. The cell and zebrafish experiments reveal that as concentration of SCAE-TW or SCAE-JP increases, the melanin content and tyrosinase activity decreased in a dose dependent manner. Melanogenesis related genes such as MITF and TYR gene expression in the B16F10 cells were significantly inhibited by the treatment of SCAE-TW or SCAE-JP by the quantitative PCR analysis. The foam test reveals that SCAE from either Taiwan or Japan are possessed with the feature of amphiphilic molecule similar to saponin compound. According to the standard curve of Quillaja bark saponin standard, we calculated SCAE-TW and SCAE-JP contains 3.45mg and 6.48mg of the saponin component per 100mg after lyophilization treatment, respectively. This study demonstrated that the saponin compounds in SCAE may achieve anti-melanogenesis through the inhibition of melanogenesis related gene expression and protein activity.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:53:32Z (GMT). No. of bitstreams: 1
U0001-2807202221344000.pdf: 2118845 bytes, checksum: cd714929de62a71691ad3766abb3e719 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents中文摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 vii 第一章、 前言 1 一、海洋生物活性物質 1 二、海參的營養 2 三、海參所含營養之生物活性功能 4 四、海參的產值 7 五、海參的加工及乾貨應用 7 六、黑色素生成機制 8 七、目前市售抗黑色素用藥與相關機制 10 八、小鼠黑色素瘤細胞株(B16F10 melanoma cell line) 10 九、斑馬魚(Zebrafish)胚胎發育與其黑色素生成 11 十、實驗動機 12 第二章、材料與方法 13 一、海參水萃液 13 (一)海參水萃液(SCAE-TW/JP)來源 13 (二)凍結乾燥 13 二、細胞實驗 13 (一)細胞取得 13 (二)細胞復甦 13 (三)細胞繼代 14 (四)細胞活存率實驗 14 (五)細胞黑色素含量 14 (六)細胞酪胺酸酶活性 15 (七)B16F10細胞 melanogenesis 相關基因表現量 15 三、斑馬魚胚胎實驗 17 (一)斑馬魚胚胎收集 18 (二)斑馬魚胚胎活存率 18 (三)斑馬魚胚胎melanin含量 18 (四)斑馬魚酪胺酸酶活性 19 四、SCAE中有效抗黑色素成分之檢驗 19 (一)Foam test 19 (二)Vanillin-sulfuric acid assay 20 五、統計分析 20 第三章、 實驗結果 21 一、 海參水萃液樣品與凍結乾燥 21 二、 小鼠黑色素細胞株生長、活存率與SCAE之半數致死濃度(LC50) 21 三、 小鼠黑色素細胞株黑色素相對量與酪胺酸脢活性 26 四、 小鼠黑色素細胞株之黑色素相關基因表現量 29 五、 斑馬魚胚胎活存率 35 六、 斑馬魚胚胎黑色素表現量與酪胺酸脢表現量 38 七、 SCAE中有效抗黑色素成分之檢驗 40 第四章、 討論 43 第五章、 結論 49 參考文獻 50
dc.language.isozh-TW
dc.subject水萃液zh_TW
dc.subject斑馬魚胚胎zh_TW
dc.subject仿刺參zh_TW
dc.subject黑色素生成zh_TW
dc.subject小鼠黑色素瘤細胞株zh_TW
dc.subjectzebrafish embryosen
dc.subjectsea cucumber (apostichopus japonicusen
dc.subjectaqueous extracten
dc.subjectmelanogenesisen
dc.subjectmurine B16F10 cell lineen
dc.title探討海參水萃物對小鼠黑色素瘤細胞株和斑馬魚胚胎之抗黑色素生成效果zh_TW
dc.titleThe effects of aqueous extract of sea cucumber on the melanogenesis of B16F10 cells and zebrafish embryosen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈士新(Shyn-Shin Sheen),曾登裕(Deng-Yu Tseng),呂建和(Jian-He Lu)
dc.subject.keyword仿刺參,水萃液,黑色素生成,小鼠黑色素瘤細胞株,斑馬魚胚胎,zh_TW
dc.subject.keywordsea cucumber (apostichopus japonicus,aqueous extract,melanogenesis,murine B16F10 cell line,zebrafish embryos,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202201854
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
dc.date.embargo-lift2022-08-02-
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2807202221344000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved