Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85256
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭仁傑(Jen-Chieh Shiao)
dc.contributor.authorChiao-Feng Laien
dc.contributor.author賴巧芳zh_TW
dc.date.accessioned2023-03-19T22:53:21Z-
dc.date.copyright2022-08-05
dc.date.issued2022
dc.date.submitted2022-08-01
dc.identifier.citationAdey, W. H., & Vassar, J. M. (1975). Colonization, succession and growth rates of tropical crustose coralline algae (Rhodophyta, Cryptonemiales). Phycologia, 14, 55-69. Andrus, C. F. T., & Crowe, D. E. (2002). Alteration of otolith aragonite: Effects of prehistoric cooking methods on otolith chemistry. Journal of Archaeological Science, 29, 291-299. Baker, D. M., Jordán-Dahlgren, E., Maldonado, M. A., & Harvell, C. D. (2010). Sea fan corals provide a stable isotope baseline for assessing sewage pollution in the Mexican Caribbean. Limnology and Oceanography, 55, 2139-2149. Ballestero, E. (2006). Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanography and Marine Biology: An Annual Review, 44, 123-195. Beja., P.R. (1995). Structure and seasonal fluctuations of rocky littoral fish assemblages in south-western Portugal: implication of otter prey variability. Journal of the Marine Biological Association of the United Kingdom, 75, 833-847. Berthelsen, A. K., & Taylor, R. B. (2014). Arthropod mesograzers reduce epiphytic overgrowth of subtidal coralline turf. Marine Ecology Progress Series, 515, 123-132. Boiseau, M., & Juillet-Leclerc, A. (1997). H2O2 treatment of recent coral aragonite: oxygen and carbon isotopic implications. Chemical Geology, 143, 171-180. Bonaglia, S., Hylén, A., Rattray, J. E., & Kononets, M. (2017). The fate of fixed nitrogen in marine sediments with low organic loading: An in situ study. Biogeosciences, 14, 285-300. Borowizka, M. A. (1979). Calcium exchange and measurement of calcification rates in the calcareous coralline red alga, Amphiroa foliacea. Marine Biology, 50, 339–347. Borowitzka, M. A., & Larkum, W. D. (1976). Calcification in the green alga, Halimeda: II. The exchange of Ca2+ and the occurrence of age gradients in calcification and photosynthesis. Journal of Experimental Botany. 27, 864–878. Brown, P. J., & Taylor, R. B. (1999). Effects of trampling by humans on animals inhabiting coralline algal turf in the rocky intertidal. Journal of Experimental Marine Biology and Ecology, 235, 45-53. Caragnano, A., Basso, D., & Rodondi, G. (2016). Growth rates and ecology of coralline rhodoliths from the Ras Ghamila back reef lagoon, Red Sea. Marine Ecology, 37, 713-726. Carvalho, D. R. d., Alves, C. B. M., & Pompeu, P. S. (2022). Uncertainty in estimating fish trophic positions and food web structure in highly polluted river basins. Environmental Biology of Fishes, 105, 119-137. Chisholm, J. R. M. (2003). Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography, 48, 1376-1387. Cilia, E. (2019). Detecting eutrophication in coastal North Carolina with the 15N values of seagrasses and algae. Union College, bachelor’s thesis. https://digitalworks.union.edu/theses/2276 Collos, Y., Siddiqi, M. Y., Wang, M. Y., Glass, A. D. M., & Harrison, P. J. (1992). Nitrate uptake kinetics by two marine diatoms using the radioactive tracer 13N. Journal of Experimental Marine Biology and Ecology, 163, 251-260. Collos, Y., Vaquer, A., Bibent, B., Slawyk, G., Garcia, N., Souchu, P. (1997). Variability in Nitrate Uptake Kinetics of Phytoplankton Communities in a Mediterranean Coastal Lagoon. Estuarine, Coastal and Shelf Science, 44, 369-375. Costanzo, S. D., O’Donohue, M. J., Dennison, W. C., Loneragan, N. R., & Thomas, M. (2001). A new approach for detecting and mapping sewage impacts. Marine Pollution Bulletin, 42, 149-156. Chou, C. H., Chiang, Y. C., Huang, A. C., Huang, Y. T., Lin, W. H., & Lee, C. D. (1979). Impacts of water pollution on crop growth in Taiwan IV. The Hsinchu and Taoyuan areas. Institude of Botany, Academia Sinica, 20, 123-144. Czermak, A., Ledderose, A., Strott, N., Meier, T., & Grupe, G. (2006). Social structures and social relations-an archaeological and anthropological examination of three early Medieval separate burial sites in Bavaria. Anthropologischer Anzeiger, 64, 297-310. Dähnke, K., Bahlmann, E., Emeis, K. (2008). A nitrate sink in estuaries? An assessment by means of stable nitrate isotopes in the Elbe estuary. Limnology and Oceanography, 53, 1504-1511. Dunbar, R. B., & Wellington, G. M. (1981). Stable isotopes in a branching coral monitor seasonal temperature variation. Nature, 293, 453-455. Faye, D., de Morais, L. T., Raffray, J., Sadio, O., Thiaw, O. T., & Le Loc’h, F. (2011). Structure and seasonal variability of fish food webs in an estuarine tropical marine protected area (Senegal): Evidence from stable isotope analysis. Estuarine, Coastal and Shelf Science, 92, 607-617. Freiwald, A., & Henrich, R. (1994). Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology, 41, 963-984. Fuji, A. (1988). Measuring wave force on a rocky intertidal shore. Bulletin of Fisheries Sciences, Hokkaido University, 39, 257-264. Gaffey, S. J. & Bronnimann, C. E. (1993). Effects of bleaching on organic and mineral phases in biogenic carbonate: research method paper. Journal of Sedimentary Research, 63, 752-754. Gaffey, S. J., Kolak, J. J., & Bronnimann, C. E. (1991). Effects of drying, heating, annealing, and roasting on carbonate skeletal material, with geochemical and diagenetic implications. Geochimica et Cosmochimica Acta, 55, 1627-1640. Geeraert, N., Duprey, N., Mcilroy, S. E., & Kim, K. (2020). The anthropogenic nitrogen footprint of a tropical lagoon: spatial variability of Padina sp. δ15N values. Pacific Science, 74, 19-29. Gheskiere, T., Vincx, M., Weslawski, J. M., Scapini, F., & Degraer, S. (2005). Meiofauna as descriptor of tourism-induced changes at sandy beaches. Marine Environmental Research, 60, 245-265. Goodfriend, G. A. (1992). The use of land snail shells in paleoenvironmental reconstruction. Quaternary Science Reviews, 11, 665-685. Gordan, M.S. (1998). African amphibious fishes and the invasion of the land by the tetrapods. South African Journal of Zoology, 33, 115-118. Grottoli, A. G., Rodrigues, L. J., Matthews, K. A., Palardy, J. E., & Gibb, O. T. (2005). Pre-treatment effects on coral skeletal δ13C and δ18O. Chemical Geology, 221, 225-242. Halfar, J., Hetzinger, S., Adey, W., Zack, T., Gamboa, G., Kunz, B., Williams, B., & Jacob, D. E. (2011). Coralline algal growth-increment widths archive North Atlantic climate variability. Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 71-80. Halfar, J., Steneck, R. S., Joachimski, M., Kronz, A., & Wanamaker, Jr., A. D. (2008). Coralline red algae as high-resolution climate recorders. Geology, 36, 463-466. Halfar, J., Zack, T., Kronz, A., & Zachos, J. C. (2000). Growth and high-resolution paleoenvironmental signals of rhodoliths (coralline red algae): A new biogenic archive. Journal of Geophysical research, 105, 22107-22116. Heijen, L. H. V. D., Kamenos, N. A. (2015). Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial. Biogeosciences, 12, 6429-6441. Hsieh, Y., Shiao, J. C., Lin, S. W., & Iizuka, Y. (2019). Quantitative reconstruction of salinity history by otolith oxygen stable isotopes: An example of a euryhaline fish Lateolabrax japonicus. Rapid Communications in Mass Spectrometry, 33, 1344-1354. Ishikawa, M., Ogawa, N. O., Ohkouchi, N., Husana, D. E. M., & Kase, T. (2017). Stable carbon isotope compositions of foot tissue, conchiolin opercula, and organic matrix within the shells of two marine gastropods from a seagrass meadow in the Philippines. Geochemical Journal, 51, 241-250. Jimenez-Lopez, C., Romanek, C. S., & Caballero, E. (2006). Carbon isotope fractionation in synthetic magnesian calcite. Geochimica et Cosmochimica Acta, 70, 1163-1171. Kamenos, N. A., & Law, A. (2010). Temperature controls on coralline algal skeletal growth. Journal of Phycology, 46, 331-335. Keatings, K. W., Holmes, J. A., & Heaton, T. H. E. (2006). Effects of pre-treatment on ostracod valve chemistry. Chemical Geology, 235, 250-261. Kendrick, G. A. (1991). Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. Journal of Experimental Marine Biology and Ecology, 147, 47-63. Kim, S. T., O’Neil, J. R., Hillaire-Marcel, C., & Mucci, A. (2007). Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta, 71, 4704-4715. Kitagawa, T., Ishimura, T., Uozata, R., Shirai, K., Amano, Y., Shinoda, A., Otake, T., Tsunogai, U., & Kimura, S. (2013). Otolith δ18O of Pacific bluefin tuna Thunnus orientails as an indicator of ambient water temperature. Marine Ecology Progress Series, 481, 199-209. Koch, P. L. (1998). Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences, 26, 573–613. Kunc, H. P., Mclaughlin, K. E., & Schmidt, R. (2016). Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proceedings of the Royal Society B, 283. Lake, J. L., McKinney, R. A., Osterman, F. A., Pruell, R. J., Kiddon, J., Ryba, S. A., & Libby, A. D. (2001). Stable nitrogen isotopes as indicators of anthropogenic activities in small freshwater systems. Canadian Journal of Fisheries and Aquatic Sciences, 58, 870-878. Lee, D., & Carpenter, S. J. (2001). Isotope disequilibrium in marine calcareous algae. Chemical Geology, 172, 307-329. Leng, M. J., Wagner, B., Boehm, A., Panagiotopoulos, K., Vane, C. H., Snelling, A., Haidon, C., Woodley, E., Vogel, H., Zanchetta, G., & Baneschi, I. (2013). Understanding past climatic and hydrological variability in the Mediterranean from Lake Prespa sediment isotope and geochemical record over the Last Glacial cycle. Quaternary Science Reviews, 66, 123-136. Lin, Y. P., Chang, T. K., Fan, C., Anthony, J., Petway, J. R., Lien, W. Y., Liang, C. P., & Ho, Y. F. (2017). Applications of information and communication technology for improvements of water and soil monitoring and assessments in agricultural areas-A case study in the Taoyuan irrigation district. Environments, 4, 6. Littler, M. M., & Doty, M. S. (1975). Ecological components structuring the seaward edges of tropical Pacific reefs: the distribution, communities and productivity of Porolithon. Journal of Ecology, 63, 117-129. Liu, C. Y., Yang, S. Y., & Chen, C. A. (2017). Unprecedented calcareous algal reefs in northern Taiwan merit high conservation priority. Coral Reefs, 36, 1253. Liu, T. K., Chen, P., & Chen, H. Y. (2014). Applying comprehensive evaluation method and satellite ocean color chlorophyll analysis to assess coastal eutrophication in Taiwan. Proceedings of The Twenty-fourth International Ocean and Polar Engineering Conference, ISOPE Busan, Korea. 652-656. Lugendo, B. R., & Kimirei, I. A. (2021). Anthropogenic nitrogen pollution in mangrove ecosystems along Dar es Salaam and Bagamoyo coasts in Tanzania. Marine Pollution Bulletin, 168, 112415. McCallister, S. L., & del Giorgio, P. A. (2008). Direct measurement of the δ13C signature of carbon respired by bacteria in lakes: Linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnology and Oceanography, 53, 1204-1216. McConnaughey, T. (1989). 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53, 163-171. Milano, S., Prendergast, A. L., & Schöne, B. R. (2016). Effects of cooking on mollusk shell structure and chemistry: Implications for archeology and paleoenvironmental reconstruction. Journal of Archaeological Science: Reports, 7, 14-26. Murray, J., Prouty, N. G., Peek, S., & Paytan, A. (2019). Coral Skeleton δ15N as a tracer of historic nutrient loading to a coral reef in Maui, Hawaii. Scientific Reports, 9, 5579. Naddafi, R., Koupayeh, N. H., & Ghorbani, R. (2021). Spatial and temporal variations in stable isotope values (δ13C and δ15N) of the primary and secondary consumers along the southern coastline of the Caspian Sea. Marine Pollution Bulletin, 164, 112001. Nagelkerken, I., van der Velde, G., Gorissen, M.W., Meijer, G.J., van't Hof, T. & den Hartog, C. (2000). Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal and Shelf Science, 51, 31–44. Nelson, C. S. (1988). An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology, 60, 3-12. Nielsen, J. M., Popp, B. N., & Winder, M. (2015). Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms. Oecologia, 178, 631-642. Ochoa-Izaguirre, M. J. & Soto-Jiménez, M. F. (2015). Variability in nitrogen stable isotope ratios of macroalgae: Consequences for the identification of nitrogen sources. Journal of Phycology, 51, 46-65. Petzke, K. J., Boeing, H., Metges, C. C. (2005). Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance. Rapid Communications in Mass Spectrometry, 19, 1392-1400. Short, J., Kendrick, G. A., Falter, J., & McCulloch, M. T. (2014). Interactions between filamentous turf algae and coralline algae are modified under ocean acidification. Journal of Experimental Marine Biology and Ecology, 456, 70-77. Smith, A. M., & Nelson, C. S. (2003). Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Science Reviews, 63, 1-31. Spalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., & Ermgassen, P. Z. (2017). Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104-113. Spero, H. J., Bijma, J., Lea, D. W., & Bemis, B. E. (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390, 497-500. Steneck, R. S. (1983). Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology, 9, 44-61. Steneck, R. S. (1986). The ecology of coralline algal crusts: Convergent patterns and adaptative strategies. Annual Review of Ecology, Evolution, and Systematisc, 17, 273-303. Teh, L. S. L., Teh, L. C. L., & Sumaila, U. R. (2013). A global estimate of the number of coral reef fishers. PLoS ONE, 8, e65397. Teichert, S., & Freiwald, A. (2014). Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation. Biogeosciences, 11, 833-842. Vásquez-Elizondo, R. M., & Enríquez, S. (2016). Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Scientific Reports, 6, 19030. Vermeij, M. J. A., Dailer, M. L., & Smith, C. M. (2011). Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs. Marine Ecological Progress Series, 422, 1-7. Vinagre, C., Madeira, C., Dias, M., Narciso, L., & Mendonça, V. (2019). Reliance of coastal intertidal food webs on river input – Current and future perspectives. Ecological Indicators, 101, 632-639. Ward, R. D., Holmes, B. H., White, W. T., & Last, P. R. (2008). DNA barcoding Australasian chondrichthyans: results and potential uses in conservation. Marine and Freshwater Research, 59, 57-71. Yu, H-Y., Huang, S-C., & Lin, H-J. (2020). Factors structuring the macrobenthos community in tidal algal reefs. Marine Environmental Research, 161, 105119. Zhan, S. H., Chen, L., Liao, C. P., Chang, W. R., Li, C. C., Tang, G. Y., Liou, C. Y., Wang, W. L., Wang, S. W., & Liu, S. L. (2022). Geographic distance, sedimentation, and substrate shape cryptic crustose coralline algal assemblages in the world’s largest subtropical intertidal algal reef. Molecular ecology, 31, 3656-3071. Zhang, N., Lin, M., Yamada, K., Kano, A., Liu, Q., Yoshida, N., & Matsumoto, R. (2020). The effect of H2O2 treatment on stable isotope analysis (δ13C, δ18O and Δ47) of various carbonate minerals. Chemical Geology, 532, 119352. 戴昌鳳、王士偉、張睿昇(2009)。桃園觀音藻礁生態解說手冊。臺中:臺灣中油股份有限公司液化天然氣工程處。 桃園縣政府農業發展局(2014)。桃園藻礁委託研究案-期末報告(核定版)。採購案號:1010702-2,58-67。 臺灣生命大百科。https://taieol.tw/。 李坤璋(2022)。兇猛酋婦蟹在藻礁生態系的角色。東海大學博士論文,44-52。 林綉美(2020)。「109年度藻礁生態系調查計畫」案成果報告書。海洋委員會海洋保育署委託計畫。高雄市,臺灣,11-17。 鄭峻翔(2010)。淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究。國立中央大學碩士論文,49-66。 邵廣昭(2022)。臺灣魚類資料庫網路電子版。http://fishdb.sinica.edu.tw。 王士偉、戴昌鳳、謝凱旋(2008)。桃園地區全新世礁灰岩之地質調查。第5屆臺灣地層研討會(2008.09.24. 經濟部中央地質調查所)論文集,150。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85256-
dc.description.abstract海岸藻礁生態系為潮間帶生物提供結構複雜的棲地,其碳酸鈣礁體也儲存了長時間尺度之環境變遷過程。本研究探討臺灣殼狀珊瑚藻所紀錄之穩定性氮同位素值(δ15N)變化,結果發現約1400年前成長於桃園與北海岸麟山鼻的殼狀珊瑚藻,其δ15N值約為2-3‰,明顯低於現生殼狀珊瑚藻的δ15N值,分別約為10.2 ± 1.2‰(桃園)與5.6 ± 0.9‰(麟山鼻)。此外,生物群聚之δ15N值,於桃園藻礁介於8-20‰,也明顯高於麟山鼻生物群聚之δ15N值(4-11‰),顯示人為汙染已明顯改變藻礁生態系食物鏈之δ15N基礎值,並且以桃園藻礁受到汙染程度較為嚴重。另外,鈣化藻類的碳酸鹽中的氧(δ18O)同位素值可用於建構古海洋之溫度變化,然而前人的研究利用高溫去除藻體有機物的方法,可能會造成鈣化藻類之δ18O值產生分化,而改變原始組成。為瞭解碳酸鹽去除有機物的方法對鈣化藻類之影響,本研究透過四種去有機處理法(無處理、雙氧水分解法、常壓高溫加熱、真空高溫加熱)來移除殼狀珊瑚藻碳酸鹽的有機物質,結果顯示高溫加熱確實會降低殼狀珊瑚藻δ18O值,無處理與雙氧水分解法則不會造成δ18O再分化。這證實了過去的文獻中所提及鈣化藻類的δ18O值不平衡是由於高溫的製備方式所產生之分化。此外,桃園藻礁在過去被證實其年代長達7600年,然而在臺灣的殼狀珊瑚藻之生長速度仍欠缺明確的數據,因此本研究也量測了臺灣現生殼狀珊瑚藻的垂直與水平生長速率,以瞭解該藻體在藻礁生態系中的成長、入添與再生能力。本研究係將附著於鵝卵石上的殼狀珊瑚藻以茜素紅染色並放置於海水缸養殖6-8個月,殼狀珊瑚藻的垂直生長速率約為0.708 μm/day,生長在養殖缸壁上的新生殼狀珊瑚藻水平生長速率,則高達約0.11 mm/day。該結果指出臺灣的殼狀珊瑚藻的增厚速度緩慢,但是在環境適宜的條件下,殼狀紅藻幼體具有良好的入添與生長能力。zh_TW
dc.description.abstractCoastal algal reef ecosystem not only provide complex habitats for diverse marine organisms, the calcified reef structured but also storage the long-term environmental information. In this study, I analyzed stable isotopic compositions of the marine organisms in the crustose coralline algae (CCA) ecosystem to elucidate the sewage pollutions. The δ15N values of the CCA collected from Taoyuan coast recently showed significant higher than the CCA grown about 1400 years ago (2-3‰). Besides, the δ15N values of marine organisms in Taoyuan algal reef (8-20‰) were also much higher than the counter parts collected in the Linshanbi algal reef (4-11‰). This disparity in δ15N values reflected that algal reef ecosystems in the water pollutions in the coasts of Taiwan have increased δ15N baseline, especially in the Taoyuan coasts receiving more severe pollution and resulting in overall the highest δ15N values. In addition, the δ18O value of algal carbonate was used to reconstruct ancient water temperature. However, the previous study which used high temperature treatment to remove organic matter from calcareous algae, might cause the re-equilibrium of CCA δ18O values. To prove this artifact, our study used four treatments (no-treatment, H2O2, heating in 1 atm, heating in vaccum) to remove organic matter from dead CCA in algal reef, and the results indicate that heating treatment would cause lower δ18O values compared with no-treatment and H2O2 groups. This result suggests that the isotope disequilibrium of δ18O values in the CCA in the previous study was due to high temperature treatment. Besides, this study also quantified the growth rate and evaluated the resilience of CCA. We dyed the CCA growing on the cobbles with alizarin red and cultivated in seawater tank for 8 months. The vertical growth rate of CCA have a mean value of approximately 0.708 μm/day, however the horizontal growth rate of CCA is much higher at around 0.11 mm/day. The results indicate a high ecological resilience of the CCA in north western Taiwan, which can recruit and colonize in suitable environment by recruitment of CCA seedlings.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:53:21Z (GMT). No. of bitstreams: 1
U0001-3007202210510700.pdf: 2939879 bytes, checksum: dad788da4f814310153cd35781283f1b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 ii 摘要 iii Abstract iv 目錄 vi 表格目錄 ix 圖目錄 x 壹、前言 1 1.1藻礁生態系統 1 1.2生物體作為生態系統之指標 2 1.3鈣化藻類碳酸鹽穩定性同位素 4 1.4殼狀珊瑚藻生長速率 6 1.5研究假設與目的 7 貳、材料方法 9 2.1 樣本採集 9 2.2 殼狀珊瑚藻與生物體樣本處理及分析 10 2.2.1 殼狀珊瑚藻有機物質製備 10 2.2.2 藻類與生物體肌肉樣本處理 10 2.2.3穩定性碳、氮同位素分析 11 2.3 DNA物種鑑定 12 2.4 海水樣本之營養鹽濃度分析 13 2.5 藻礁碳酸鹽樣本處理及分析 14 2.5.1 碳酸鹽樣本製備 14 2.5.2 碳酸鹽穩定性碳、氧同位素分析 15 2.5.3碳酸鈣碳、氧同位素預估之平衡值 15 2.6 殼狀珊瑚藻總有機碳(TOC)及總氮(TN)分析 17 2.6.1 總有機碳及總氮樣本製備 17 2.6.2 總有機碳及總氮穩定性碳、氮同位素含量分析 17 2.7 殼狀珊瑚藻生長速率測量 17 2.8 14C定年樣本製備 18 2.9 統計分析 20 參、結果 21 3.1 14C定年測量 21 3.2 藻礁生態系生物之穩定性碳、氮同位素組成 21 3.2.1 殼狀珊瑚藻穩定性碳、氮同位素 21 3.2.2 非鈣化海藻與動物組織之穩定性碳、氮同位素 22 3.2.3 桃園藻礁與北海岸麟山鼻藻礁生物體碳、氮同位素 23 3.2.4 海水樣本之營養鹽濃度 24 3.3 碳酸鹽去有機處理之影響 24 3.3.1去有機處理方式對穩定性碳同位素值之影響 25 3.3.2 不同去有機處理方式下對穩定性氧同位素值 25 3.4 殼狀珊瑚藻總有機碳(TOC)與總氮(TN) 26 3.5 殼狀珊瑚藻生長速率 26 3.5.1殼狀珊瑚藻生長速率計算 26 3.5.2殼狀珊瑚藻水平橫向生長 27 3.5.3 殼狀珊瑚藻單一團塊水平生長速度 27 肆、討論 29 4.1 藻礁生物群之δ15N值記錄環境水汙染 29 4.2 δ13C與δ15N值解析藻礁生物群之攝食關聯性 32 4.3 鈣化殼狀紅藻無機碳氧同位素之分化驗證 34 4.4 鈣化殼狀紅藻之成長驗證 37 伍、結論 40 陸、參考文獻 42
dc.language.isozh-TW
dc.subject殼狀珊瑚藻zh_TW
dc.subject藻礁zh_TW
dc.subject穩定性同位素zh_TW
dc.subject殼狀珊瑚藻生長速率zh_TW
dc.subjectCCA growth rateen
dc.subjectcrustose coralline algaeen
dc.subjectCCAen
dc.subjectalgal reefen
dc.subjectstable isotopeen
dc.subjectcoastal pollutionen
dc.title北臺灣殼狀珊瑚藻所紀錄之環境變遷與成長驗證zh_TW
dc.titleEnvironmental change and growth validation recorded in crustose coralline algae along north coast of Taiwanen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王士偉(Shih-Wei Wang),林綉美(Showe-Mei Lin),鍾明宗(Ming-Tsung Chung),梁茂昌(Mao-Chang Liang)
dc.subject.keyword殼狀珊瑚藻,藻礁,穩定性同位素,殼狀珊瑚藻生長速率,zh_TW
dc.subject.keywordcrustose coralline algae,CCA,algal reef,stable isotope,CCA growth rate,coastal pollution,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202201895
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
dc.date.embargo-lift2022-08-05-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
U0001-3007202210510700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved