請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85244完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 華國泰(Kuo-Tai Hua) | |
| dc.contributor.author | You-Ru Chen | en |
| dc.contributor.author | 陳又如 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:52:33Z | - |
| dc.date.copyright | 2022-10-03 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-02 | |
| dc.identifier.citation | 1. Shankar, S.R., et al., G9a, a multipotent regulator of gene expression. Epigenetics, 2013. 8(1): p. 16-22. 2. Collins, R.E., et al., The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol, 2008. 15(3): p. 245-50. 3. Bittencourt, D., et al., Role of distinct surfaces of the G9a ankyrin repeat domain in histone and DNA methylation during embryonic stem cell self-renewal and differentiation. Epigenetics Chromatin, 2014. 7: p. 27. 4. Ding, N., et al., Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell, 2008. 31(3): p. 347-59. 5. Li, Z., et al., Cyclin D1 integrates G9a-mediated histone methylation. Oncogene, 2019. 38(22): p. 4232-4249. 6. Roopra, A., et al., Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell, 2004. 14(6): p. 727-38. 7. Fiszbein, A., et al., Alternative Splicing of G9a Regulates Neuronal Differentiation. Cell Rep, 2016. 14(12): p. 2797-808. 8. Tachibana, M., et al., G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J, 2008. 27(20): p. 2681-90. 9. Sanchez, N.A., et al., Heterodimerization of H3K9 histone methyltransferases G9a and GLP activates methyl reading and writing capabilities. J Biol Chem, 2021. 297(5): p. 101276. 10. Shinkai, Y. and M. Tachibana, H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev, 2011. 25(8): p. 781-8. 11. Zhang, K., et al., Targeting histone methyltransferase G9a inhibits growth and Wnt signaling pathway by epigenetically regulating HP1alpha and APC2 gene expression in non-small cell lung cancer. Mol Cancer, 2018. 17(1): p. 153. 12. Tachibana, M., et al., G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev, 2002. 16(14): p. 1779-91. 13. Jan, S., et al., Targeting EHMT2/ G9a for cancer therapy: Progress and perspective. Eur J Pharmacol, 2021. 893: p. 173827. 14. Huang, J., et al., G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem, 2010. 285(13): p. 9636-9641. 15. Rathert, P., et al., Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol, 2008. 4(6): p. 344-6. 16. Momparler, R.L., Cancer epigenetics. Oncogene, 2003. 22(42): p. 6479-83. 17. Hu, L., et al., G9A promotes gastric cancer metastasis by upregulating ITGB3 in a SET domain-independent manner. Cell Death Dis, 2018. 9(3): p. 278. 18. Huang, T., et al., G9A promotes tumor cell growth and invasion by silencing CASP1 in non-small-cell lung cancer cells. Cell Death Dis, 2017. 8(4): p. e2726. 19. Segovia, C., et al., Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med, 2019. 25(7): p. 1073-1081. 20. Wei, L., et al., Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. J Hepatol, 2017. 67(4): p. 758-769. 21. Zhang, J., et al., Down-regulation of G9a triggers DNA damage response and inhibits colorectal cancer cells proliferation. Oncotarget, 2015. 6(5): p. 2917-27. 22. Zhao, Z., et al., [Expression of G9a in breast cancer and its effect on proliferation of breast cancer cells in vitro]. Nan Fang Yi Ke Da Xue Xue Bao, 2019. 39(4): p. 477-484. 23. Kim, S.K., et al., The novel prognostic marker, EHMT2, is involved in cell proliferation via HSPD1 regulation in breast cancer. Int J Oncol, 2019. 54(1): p. 65-76. 24. Rao, V.K., et al., G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation. Nucleic Acids Res, 2016. 44(17): p. 8129-43. 25. Tuteja, N. and R. Tuteja, Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem, 2004. 271(10): p. 1835-48. 26. Labib, K., J.A. Tercero, and J.F. Diffley, Uninterrupted MCM2-7 function required for DNA replication fork progression. Science, 2000. 288(5471): p. 1643-7. 27. Wang, Y., et al., MCM family in gastrointestinal cancer and other malignancies: From functional characterization to clinical implication. Biochim Biophys Acta Rev Cancer, 2020. 1874(2): p. 188415. 28. Fletcher, R.J., et al., The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat Struct Biol, 2003. 10(3): p. 160-7. 29. Poplawski, A., et al., The zinc finger domain of the archaeal minichromosome maintenance protein is required for helicase activity. J Biol Chem, 2001. 276(52): p. 49371-7. 30. Kimura, H., et al., Mouse MCM proteins: complex formation and transportation to the nucleus. Genes Cells, 1996. 1(11): p. 977-93. 31. Wei, Z., et al., Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6. J Biol Chem, 2010. 285(17): p. 12469-73. 32. Schwacha, A. and S.P. Bell, Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell, 2001. 8(5): p. 1093-104. 33. Forsburg, S.L., Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev, 2004. 68(1): p. 109-31. 34. Davey, M.J., C. Indiani, and M. O'Donnell, Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J Biol Chem, 2003. 278(7): p. 4491-9. 35. Fei, L. and H. Xu, Role of MCM2-7 protein phosphorylation in human cancer cells. Cell Biosci, 2018. 8: p. 43. 36. Frigola, J., et al., Cdt1 stabilizes an open MCM ring for helicase loading. Nat Commun, 2017. 8: p. 15720. 37. Prokhorova, T.A. and J.J. Blow, Sequential MCM/P1 subcomplex assembly is required to form a heterohexamer with replication licensing activity. J Biol Chem, 2000. 275(4): p. 2491-8. 38. Ishimi, Y., A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J Biol Chem, 1997. 272(39): p. 24508-13. 39. Pasion, S.G. and S.L. Forsburg, Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol Biol Cell, 1999. 10(12): p. 4043-57. 40. Ishimi, Y., Regulation of MCM2-7 function. Genes Genet Syst, 2018. 93(4): p. 125-133. 41. Remus, D., et al., Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell, 2009. 139(4): p. 719-30. 42. Bell, S.P., The origin recognition complex: from simple origins to complex functions. Genes Dev, 2002. 16(6): p. 659-72. 43. Nishitani, H., et al., The Cdt1 protein is required to license DNA for replication in fission yeast. Nature, 2000. 404(6778): p. 625-8. 44. Guerrero-Puigdevall, M., N. Fernandez-Fuentes, and J. Frigola, Stabilisation of half MCM ring by Cdt1 during DNA insertion. Nat Commun, 2021. 12(1): p. 1746. 45. Ticau, S., et al., Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell, 2015. 161(3): p. 513-525. 46. Deegan, T.D. and J.F. Diffley, MCM: one ring to rule them all. Curr Opin Struct Biol, 2016. 37: p. 145-51. 47. Bukholm, I.R., et al., Association between histology grade, expression of HsMCM2, and cyclin A in human invasive breast carcinomas. J Clin Pathol, 2003. 56(5): p. 368-73. 48. Shetty, A., et al., DNA replication licensing and cell cycle kinetics of normal and neoplastic breast. Br J Cancer, 2005. 93(11): p. 1295-300. 49. Erkan, E.P., et al., Depletion of minichromosome maintenance protein 7 inhibits glioblastoma multiforme tumor growth in vivo. Oncogene, 2014. 33(39): p. 4778-85. 50. Issac, M.S.M., et al., MCM2, MCM4, and MCM6 in Breast Cancer: Clinical Utility in Diagnosis and Prognosis. Neoplasia, 2019. 21(10): p. 1015-1035. 51. Freeman, A., et al., Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res, 1999. 5(8): p. 2121-32. 52. Going, J.J., et al., Aberrant expression of minichromosome maintenance proteins 2 and 5, and Ki-67 in dysplastic squamous oesophageal epithelium and Barrett's mucosa. Gut, 2002. 50(3): p. 373-7. 53. Alison, M.R., T. Hunt, and S.J. Forbes, Minichromosome maintenance (MCM) proteins may be pre-cancer markers. Gut, 2002. 50(3): p. 290-1. 54. Tan, D.F., et al., MCM2--a promising marker for premalignant lesions of the lung: a cohort study. BMC Cancer, 2001. 1: p. 6. 55. Polotskaia, A., et al., Proteome-wide analysis of mutant p53 targets in breast cancer identifies new levels of gain-of-function that influence PARP, PCNA, and MCM4. Proc Natl Acad Sci U S A, 2015. 112(11): p. E1220-9. 56. Koppen, A., et al., Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma. Eur J Cancer, 2007. 43(16): p. 2413-22. 57. Casciello, F., et al., Functional Role of G9a Histone Methyltransferase in Cancer. Front Immunol, 2015. 6: p. 487. 58. Mendez, J. and B. Stillman, Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol, 2000. 20(22): p. 8602-12. 59. You, Z. and H. Masai, Potent DNA strand annealing activity associated with mouse Mcm2 approximately 7 heterohexameric complex. Nucleic Acids Res, 2017. 45(11): p. 6494-6506. 60. Kanter, D.M., I. Bruck, and D.L. Kaplan, Mcm subunits can assemble into two different active unwinding complexes. J Biol Chem, 2008. 283(45): p. 31172-82. 61. Braun, K.A. and L.L. Breeden, Nascent transcription of MCM2-7 is important for nuclear localization of the minichromosome maintenance complex in G1. Mol Biol Cell, 2007. 18(4): p. 1447-56. 62. Tanaka, S. and J.F. Diffley, Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol, 2002. 4(3): p. 198-207. 63. Sweis, R.F., et al., Discovery and development of potent and selective inhibitors of histone methyltransferase g9a. ACS Med Chem Lett, 2014. 5(2): p. 205-9. 64. Vedadi, M., et al., A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol, 2011. 7(8): p. 566-74. 65. Chin, H.G., et al., Sequence specificity and role of proximal amino acids of the histone H3 tail on catalysis of murine G9A lysine 9 histone H3 methyltransferase. Biochemistry, 2005. 44(39): p. 12998-3006. 66. Ding, J., et al., The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab, 2013. 18(6): p. 896-907. 67. Ho, J.C., et al., Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway. PLoS One, 2017. 12(11): p. e0188051. 68. Jorgensen, H.F., et al., The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol, 2007. 8(8): p. R169. 69. Yokochi, T., et al., G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19363-8. 70. Wu, R., et al., Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell, 2005. 16(6): p. 2872-81. 71. Wu, R., et al., H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res, 2017. 45(1): p. 169-180. 72. Ferry, L., et al., Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Mol Cell, 2017. 67(4): p. 550-565 e5. 73. Brent, M.M. and R. Marmorstein, Ankyrin for methylated lysines. Nat Struct Mol Biol, 2008. 15(3): p. 221-2. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85244 | - |
| dc.description.abstract | 組蛋白離胺酸甲基轉移酶G9a (又稱為Euchromatic Histone Lysine Methyltransferase 2, EHMT2),廣泛分布於人體的各種組織中,其主要功能是催化組蛋白H3第九個胺基酸離胺酸(H3K9) 的甲基化,使DNA與組蛋白形成較緊密的異染色質進而抑制各種基因表達,並且在細胞增生、分化、老化等機制中有著重要的作用,至今為止在各個文獻中已發現多數癌症組織中的G9a蛋白表現量顯著高於正常組織,並且G9a與細胞增生、腫瘤大小呈現正相關,因此我們以同樣有G9a過表現的乳癌細胞為模型,在初步研究中發現G9a有與微小染色體維持蛋白 (Minichromosome Maintenance protein, MCM protein) 結合的可能性,且從TCGA資料庫分析發現,乳癌中G9a與MCM次單位的mRNA表現量皆呈現正相關;由MCM2-7六個次單位形成的MCM複合體是在DNA複製中最主要的解旋酶,因此本次研究目的是要釐清G9a與MCM複合體之交互作用在癌細胞增生的調控,並探討兩者之間的結合關係。在本次研究中,我們驗證了G9a與MCM和細胞的長、短期增生以及DNA合成皆有正相關性,並且不影響彼此的轉錄表現,G9a雖然不會改變MCM的轉錄表達及次單位間的結合但會增加細胞核中的MCM蛋白含量,而敲低G9a的基因表達或抑制酵素活性都會使MCM與染色質的結合下降,此結果也導致DNA聚合酶的染色質負載也跟著下降;為了深入了解G9a與MCM的結合關係,我們透過多種蛋白質交互作用試驗發現G9a的ANK repeat domain會結合於MCM4的N-C linker,並從已發表文獻及預測甲基化軟體分析結果推測ANK repeat domain可能會藉由辨認N-C linker區域中精氨酸-甲基離胺酸motif結合;綜合以上結果,我們發現G9a可能藉由與MCM4的結合增加MCM複合物在細胞核中的含量及其染色質負載,而加速DNA複製起始的過程並導致細胞增生的現象。 | zh_TW |
| dc.description.abstract | Histone lysine methyltransferase G9a (also known as EHMT2) is widely expressed in various tissue. It catalyzes the mono- and di-methylation of lysine 9 on histone H3 N-tail to form transcriptionally inactive heterochromatin and silence gene expression. The G9a plays an important role in cell proliferation, differentiation, and cellular aging. It is reported that G9a is overexpressed in various cancer types and has a positive correlation with cancer cell proliferation and tumor size. In our initial data, which used a breast cancer cell line also has elevated G9a expression as the cell model, G9a was associated with the component of the Minichromosome Maintenance (MCM) complex. In TCGA database analysis, the G9a has positive correlations with MCMs at the transcription expression in breast cancer. The candidate molecule, MCM complex, is a heterohexamer, which is composed of MCM2-7, and a major helicase in DNA replication which is overexpressed in multiple cancers. The purpose of this study is to clarify the crosstalk between the MCM complex and G9a in the proliferation of the cancer cell and get insight into the binding region among them. First, we verified that G9a, as well as MCM, had a positive correlation with DNA synthesis and short-/long-term cell proliferation. Next, we discovered that G9a increased the nuclear distribution of MCMs but did not affect transcription level and subunits association. In addition, the chromatin loading of MCMs was attenuated after knockdown or inhibition of G9a, and the DNA polymerase epsilon which subsequently binds after the MCM complex was also attenuated. To investigate the interaction between G9a and MCMs, we utilized multiple protein-protein interaction analyses to reveal that the ankyrin (ANK) repeat domain of G9a directly interacted with the N-C linker of MCM4. Based on the literature and the prediction software, we suggested that the arginine-methllysine motif of the MCM4 N-C linker may be recognized by the ANK repeat domain of G9a. In conclusion, we discovered that the G9a increased nuclear distribution and chromatin loading of the MCM complex which results in DNA replication and cell proliferation by interacting with MCM4. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:52:33Z (GMT). No. of bitstreams: 1 U0001-0208202212123000.pdf: 3899119 bytes, checksum: e26e464b1a068849e44f8d2dfd860d9d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iii List of Abbreviations v Contents vi Chapter 1 Introduction 1 1.1 Histone Lysine Methyltransferase G9a 1 1.2 Minichromosome Maintenance Protein 4 1.3 Research Motivation 9 Chapter 2 Materials and Methods 11 Chapter 3 Results 21 3.1 G9a and MCM Proteins Regulate Cell Proliferation and DNA Synthesis in Breast Cancer Cells. 21 3.2 G9a Increases MCMs' Nuclear Distribution but Not Transcription Level and Subunit Association. 22 3.3 G9a Regulates the Chromatin Loading of MCMs. 24 3.4 G9a Interacts with MCM4 Directly. 25 3.5 ANK Repeat Domain of G9a Binds to MCM4 N-C Linker. 26 Chapter 4 Discussion 29 Chapter 5 Conclusion 34 Figures and Figure Legends 35 Figure A. 5 Figure B. 8 Figure C. 10 Figure 1. 35 Figure 2. 41 Figure 3. 46 Figure 4. 49 Figure 5. 52 List of Tables 55 Table 1. 55 References 56 Appendix 61 Table S1. 61 Table S2. 62 | |
| dc.language.iso | en | |
| dc.subject | 蛋白質交互作用 | zh_TW |
| dc.subject | G9a | zh_TW |
| dc.subject | 組蛋白離胺酸甲基轉移酶 | zh_TW |
| dc.subject | 癌細胞增生 | zh_TW |
| dc.subject | DNA複製 | zh_TW |
| dc.subject | 微小染色體維持蛋白4 | zh_TW |
| dc.subject | Histone Lysine Methyltransferase | en |
| dc.subject | Protein-Protein Interaction | en |
| dc.subject | Minichromosome Maintenance Protein 4 | en |
| dc.subject | DNA Replication | en |
| dc.subject | Cancer Cell Proliferation | en |
| dc.subject | G9a | en |
| dc.title | 探討MCM複合體與甲基轉移酶G9a之交互作用在癌細胞增生的調控 | zh_TW |
| dc.title | Evaluation of the Crosstalk Between the Minichromosome Maintenance Complex and Methyltransferase G9a in the Proliferation of Cancer Cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡銘賢(Ming-Hsien Chien),鄭朝文(Chao-Wen Cheng) | |
| dc.subject.keyword | G9a,組蛋白離胺酸甲基轉移酶,癌細胞增生,DNA複製,微小染色體維持蛋白4,蛋白質交互作用, | zh_TW |
| dc.subject.keyword | G9a,Histone Lysine Methyltransferase,Cancer Cell Proliferation,DNA Replication,Minichromosome Maintenance Protein 4,Protein-Protein Interaction, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU202201965 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-08-02 | - |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202212123000.pdf 未授權公開取用 | 3.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
