請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85238
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭曉意(Hsiao-I Kuo) | |
dc.contributor.author | Yun-Han Wang | en |
dc.contributor.author | 王韻涵 | zh_TW |
dc.date.accessioned | 2023-03-19T22:52:12Z | - |
dc.date.copyright | 2022-10-03 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-02 | |
dc.identifier.citation | 1. Song P, Zha M, Yang Q, Zhang Y, Li X, Rudan I. The prevalence of adult attention-deficit hyperactivity disorder: A global systematic review and meta-analysis. J Glob Health. 2021;11:04009. 2. (NIHM) Niomh. Attention-Deficit/Hyperactivity Disorder (ADHD). https://www.nimh.nih.gov/health/statistics/attention-deficit-hyperactivity-disorder-adhd. 3. 衛生福利部. 注意力不足過動症. 2015;衛生福利部心理衛生專輯(03). 4. DuPaul GJ, Weyandt LL, O'Dell SM, Varejao M. College students with ADHD: current status and future directions. J Atten Disord. 2009;13:234-250. 5. Laasonen M, Väre J, Oksanen-Hennah H, et al. Project DyAdd: Implicit learning in adult dyslexia and ADHD. Annals of dyslexia. 2014;64:1-33. 6. Pedersen A, Ohrmann P. Impaired Behavioral Inhibition in Implicit Sequence Learning in Adult ADHD. J Atten Disord. 2018;22:250-260. 7. Sanjeevan T, Cardy RE, Anagnostou E. Procedural Sequence Learning in Attention Deficit Hyperactivity Disorder: A Meta-Analysis. Frontiers in Psychology. 2020;11. 8. Clark L, Blackwell AD, Aron AR, et al. Association between response inhibition and working memory in adult ADHD: a link to right frontal cortex pathology? Biol Psychiatry. 2007;61:1395-1401. 9. Bekker EM, Overtoom CC, Kooij JJ, Buitelaar JK, Verbaten MN, Kenemans JL. Disentangling deficits in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2005;62:1129-1136. 10. Depue BE, Burgess GC, Willcutt EG, Ruzic L, Banich MT. Inhibitory control of memory retrieval and motor processing associated with the right lateral prefrontal cortex: evidence from deficits in individuals with ADHD. Neuropsychologia. 2010;48:3909-3917. 11. Epstein JN, Johnson DE, Varia IM, Conners CK. Neuropsychological assessment of response inhibition in adults with ADHD. J Clin Exp Neuropsychol. 2001;23:362-371. 12. Morein-Zamir S, Dodds C, van Hartevelt TJ, et al. Hypoactivation in right inferior frontal cortex is specifically associated with motor response inhibition in adult ADHD. Hum Brain Mapp. 2014;35:5141-5152. 13. Boonstra M, Kooij J, Oosterlaan J, Sergeant J, Buitelaar J. To act or not to act, that's the problem: Primarily inhibition difficulties in adult ADHD. Neuropsychology. 2010;24:209-221. 14. Gropper RJ, Tannock R. A pilot study of working memory and academic achievement in college students with ADHD. Journal of Attention Disorders. 2009;12:574-581. 15. Valera EM, Brown A, Biederman J, et al. Sex differences in the functional neuroanatomy of working memory in adults with ADHD. American Journal of Psychiatry. 2010;167:86-94. 16. Schweitzer JB, Hanford RB, Medoff DR. Working memory deficits in adults with ADHD: is there evidence for subtype differences? Behavioral and Brain Functions. 2006;2:43. 17. Mohamed SM, Butzbach M, Fuermaier ABM, et al. Basic and complex cognitive functions in Adult ADHD. PLoS One. 2021;16:e0256228. 18. Alderson RM, Kasper LJ, Hudec KL, Patros CH. Attention-deficit/hyperactivity disorder (ADHD) and working memory in adults: a meta-analytic review. Neuropsychology. 2013;27:287. 19. Barkley RA. ADHD and the nature of self-control: Guilford Press; 1997. 20. Charach A, Yeung E, Climans T, Lillie E. Childhood Attention-Deficit/Hyperactivity Disorder and Future Substance Use Disorders: Comparative Meta-Analyses. Journal of the American Academy of Child and Adolescent Psychiatry. 2011;50:9-21. 21. Wender PH, Wolf LE, Wasserstein J. Adults with ADHD: An overview. Annals of the New York academy of sciences. 2001;931:1-16. 22. Rohlf H, Jucksch V, Gawrilow C, et al. Set shifting and working memory in adults with attention-deficit/hyperactivity disorder. J Neural Transm (Vienna). 2012;119:95-106. 23. Riccio CA, Wolfe ME, Romine C, Davis B, Sullivan JR. The Tower of London and neuropsychological assessment of ADHD in adults. Arch Clin Neuropsychol. 2004;19:661-671. 24. Schmidt RALTD. Motor control and learning : a behavioral emphasis. Leeds: Human Kinetics; 2011. 25. Trofimova O, Mottaz A, Allaman L, Chauvigné LAS, Guggisberg AG. The “implicit” serial reaction time task induces rapid and temporary adaptation rather than implicit motor learning. Neurobiology of Learning and Memory. 2020;175:107297. 26. Leisman G, Melillo R. Effects of motor sequence training on attentional performance in ADHD children. 2010. 27. Barnes KA, Howard JH, Howard DV, Kenealy L, Vaidya CJ. Two Forms of Implicit Learning in Childhood ADHD. Developmental Neuropsychology. 2010;35:494-505. 28. Models of working memory: Mechanisms of active maintenance and executive control. New York, NY, US: Cambridge University Press; 1999. 29. Fisher T, Aharon-Peretz J, Pratt H. Dis-regulation of response inhibition in adult Attention Deficit Hyperactivity Disorder (ADHD): an ERP study. Clin Neurophysiol. 2011;122:2390-2399. 30. Woltering S, Liu Z, Rokeach A, Tannock R. Neurophysiological differences in inhibitory control between adults with ADHD and their peers. Neuropsychologia. 2013;51:1888-1895. 31. Bailey CJ, Karhu J, Ilmoniemi RJ. Transcranial magnetic stimulation as a tool for cognitive studies. Scandinavian Journal of Psychology. 2001;42:297-306. 32. Terao Y, Ugawa Y. Basic mechanisms of TMS. J Clin Neurophysiol. 2002;19:322-343. 33. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W. Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalography and clinical neurophysiology. Supplement. 1999;52:97-103. 34. Richter MM, Ehlis A-C, Jacob CP, Fallgatter AJ. Cortical excitability in adult patients with attention-deficit/hyperactivity disorder (ADHD). Neuroscience letters. 2007;419:137-141. 35. Schneider M, Retz W, Freitag C, et al. Impaired cortical inhibition in adult ADHD patients: a study with transcranial magnetic stimulation. Neuropsychiatric Disorders An Integrative Approach: Springer; 2007:303-309. 36. Hoeppner J, Neumeyer M, Wandschneider R, et al. Intracortical motor inhibition and facilitation in adults with attention deficit/hyperactivity disorder. Journal of neural transmission. 2008;115:1701-1707. 37. Hasan A, Schneider M, Schneider-Axmann T, et al. A similar but distinctive pattern of impaired cortical excitability in first-episode schizophrenia and ADHD. Neuropsychobiology. 2013;67:74-83. 38. Rossini PM, Berardelli A, Deuschl G, et al. Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:171-185. 39. Devanne H, Lavoie BA, Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res. 1997;114:329-338. 40. Ziemann U, Tergau F, Bruns D, Baudewig J, Paulus W. Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroencephalogr Clin Neurophysiol. 1997;105:430-437. 41. Premoli I, Castellanos N, Rivolta D, et al. TMS-EEG signatures of GABAergic neurotransmission in the human cortex. Journal of Neuroscience. 2014;34:5603-5612. 42. Basso JC, Suzuki WA. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast. 2017;2:127-152. 43. Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8:562-573. 44. Thacker JS, Xu Y, Tang C, Tupling AR, Staines WR, Mielke JG. A Single Session of Aerobic Exercise Mediates Plasticity-Related Phosphorylation in both the Rat Motor Cortex and Hippocampus. Neuroscience. 2019;412:160-174. 45. Molteni R, Ying Z, Gómez-Pinilla F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience. 2002;16:1107-1116. 46. El-Sayes J, Turco CV, Skelly LE, et al. The effects of biological sex and ovarian hormones on exercise-induced neuroplasticity. Neuroscience. 2019;410:29-40. 47. Neva JL, Brown KE, Peters S, et al. Acute Exercise Modulates the Excitability of Specific Interneurons in Human Motor Cortex. Neuroscience. 2021;475:103-116. 48. Smith AE, Goldsworthy MR, Garside T, Wood FM, Ridding MC. The influence of a single bout of aerobic exercise on short-interval intracortical excitability. Experimental brain research. 2014;232:1875-1882. 49. Mooney RA, Coxon JP, Cirillo J, Glenny H, Gant N, Byblow WD. Acute aerobic exercise modulates primary motor cortex inhibition. Experimental brain research. 2016;234:3669-3676. 50. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience. 2008;9:58-65. 51. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96:13427-13431. 52. Furmann M, Rebesco DB, Smouter L, et al. Influence of acute physical exercise on cognitive and motor behavior in an experimental model of alzheimer's disease. Revista Brasileira de Medicina do Esporte. 2019;25:152-156. 53. Joyce J, Graydon J, McMorris T, Davranche K. The time course effect of moderate intensity exercise on response execution and response inhibition. Brain Cogn. 2009;71:14-19. 54. Nanda B, Balde J, Manjunatha S. The Acute Effects of a Single Bout of Moderate-intensity Aerobic Exercise on Cognitive Functions in Healthy Adult Males. J Clin Diagn Res. 2013;7:1883-1885. 55. Hogan CL, Mata J, Carstensen LL. Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychology and aging. 2013;28:587. 56. Mehren A, Özyurt J, Thiel CM, Brandes M, Lam AP, Philipsen A. Effects of acute aerobic exercise on response inhibition in adult patients with ADHD. Scientific reports. 2019;9:1-13. 57. Jones GJ. Acute exercise and executive function in young adults with ADHD. 2015. 58. Mehren A, Özyurt J, Lam AP, et al. Acute Effects of Aerobic Exercise on Executive Function and Attention in Adult Patients With ADHD. Frontiers in Psychiatry. 2019;10. 59. Gapin JI, Labban JD, Bohall SC, Wooten JS, Chang Y-K. Acute exercise is associated with specific executive functions in college students with ADHD: A preliminary study. Journal of Sport and Health Science. 2015;4:89-96. 60. Fritz KM, O'Connor PJ. Acute Exercise Improves Mood and Motivation in Young Men with ADHD Symptoms. Medicine and science in sports and exercise. 2016;48:1153-1160. 61. Abramovitch A, Goldzweig G, Schweiger A. Correlates of physical activity with intrusive thoughts, worry and impulsivity in adults with attention deficit/hyperactivity disorder: a cross-sectional pilot study. Isr J Psychiatry Relat Sci. 2013;50:47-54. 62. Fuermaier ABM, Tucha L, Koerts J, et al. Good vibrations--effects of whole body vibration on attention in healthy individuals and individuals with ADHD. PLoS One. 2014;9:e90747-e90747. 63. Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub; 2013. 64. Kessler RC, Adler L, Ames M, et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): a short screening scale for use in the general population. Psychological medicine. 2005;35:245-256. 65. Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res. 2010;1341:12-24. 66. Borg G. Borg's perceived exertion and pain scales: Human kinetics; 1998. 67. Rossini PM, Barker AT, Berardelli A, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91:79-92. 68. Kujirai T, Caramia MD, Rothwell JC, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501-519. 69. Valls-Solé J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85:355-364. 70. Nicolson RI, Fawcett AJ. Procedural learning difficulties: reuniting the developmental disorders? Trends Neurosci. 2007;30:135-141. 71. Nissen MJ, Bullemer P. Attentional requirements of learning: Evidence from performance measures. Cognitive psychology. 1987;19:1-32. 72. Farkas BC, Janacsek K, Nemeth D. The reliability of the Alternating Serial Reaction Time task. 2022. 73. Hoffmann J, Koch I. Stimulus-response compatibility and sequential learning in the serial reaction time task. Psychological Research. 1997;60:87-97. 74. Koch I, Hoffmann J. Patterns, chunks, and hierarchies in serial reaction-time tasks. Psychological Research. 2000;63:22-35. 75. Conway ARA, Kane MJ, Bunting MF, Hambrick DZ, Wilhelm O, Engle RW. Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review. 2005;12:769-786. 76. Kane MJ, Engle RW. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review. 2002;9:637-671. 77. Kirchner WK. Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology. 1958;55:352-358. 78. Mackworth JF. Paced memorizing in a continuous task. Journal of Experimental Psychology. 1959;58:206-211. 79. Hockey A, Geffen G. The concurrent validity and test–retest reliability of a visuospatial working memory task. Intelligence. 2004;32:591-605. 80. Miller KM, Price CC, Okun MS, Montijo H, Bowers D. Is the N-Back Task a Valid Neuropsychological Measure for Assessing Working Memory? Archives of Clinical Neuropsychology. 2009;24:711-717. 81. Ko C-H, Yen J-Y, Yen C-F, et al. Brain activation deficit in increased-load working memory tasks among adults with ADHD using fMRI. European Archives of Psychiatry and Clinical Neuroscience. 2013;263:561-573. 82. Jones MR, Katz B, Buschkuehl M, Jaeggi SM, Shah P. Exploring N-Back Cognitive Training for Children With ADHD. Journal of Attention Disorders. 2018;24:704-719. 83. Fray PJ, Robbins TW, Sahakian BJ. Neuorpsychiatyric applications of CANTAB. International journal of geriatric psychiatry. 1996. 84. Luciana M, Nelson CA. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4-to 12-year-old children. Developmental neuropsychology. 2002;22:595-624. 85. Robbins TW, James M, Owen AM, et al. A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society. 1998;4:474-490. 86. Sahakian BJ, Morris RG, Evenden JL, et al. A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain. 1988;111:695-718. 87. Claesdotter E, Cervin M, Åkerlund S, Råstam M, Lindvall M. The effects of ADHD on cognitive performance. Nordic journal of psychiatry. 2018;72:158-163. 88. Calamia M, Markon K, Tranel D. The robust reliability of neuropsychological measures: Meta-analyses of test–retest correlations. The Clinical Neuropsychologist. 2013;27:1077-1105. 89. Smith PJ, Need AC, Cirulli ET, Chiba-Falek O, Attix DK. A comparison of the Cambridge Automated Neuropsychological Test Battery (CANTAB) with “traditional” neuropsychological testing instruments. Journal of Clinical and Experimental Neuropsychology. 2013;35:319-328. 90. Logan GD, Cowan WB, Davis KA. On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of Experimental Psychology: Human Perception and Performance. 1984;10:276. 91. Wobrock T, Schneider-Axmann T, Retz W, et al. Motor circuit abnormalities in first-episode schizophrenia assessed with transcranial magnetic stimulation. Pharmacopsychiatry. 2009;42:194-201. 92. Tan BWZ. The relationship between physical exercise and cognition in children with typical development and neurodevelopmental disorders. 2017. 93. Stevens DJ, Arciuli J, Anderson DI. Statistical Learning Is Not Affected by a Prior Bout of Physical Exercise. Cogn Sci. 2016;40:1007-1018. 94. Shallice T, Marzocchi GM, Coser S, Del Savio M, Meuter RF, Rumiati RI. Executive function profile of children with attention deficit hyperactivity disorder. Developmental neuropsychology. 2002;21:43-71. 95. Claesdotter E. Auditory Brainstem Response (ABR) and Cambridge Neuropsychological Test Automated Battery (CANTAB) as Objective Support in Diagnosing Childhood ADHD and ASD: Lund University; 2017. 96. Ritter M, Vangkilde SA, Maigaard K, Pagsberg AK, Plessen KJ, Hagstrøm J. Inhibitory Control in Children with Tourette Syndrome Is Impaired in Everyday Life but Intact during a Stop Signal Task. Journal of Clinical Medicine. 2022;11:309. 97. Birchfield N. The effects of assisted cycle therapy on executive and motor functioning in young adult females with attention-deficit hyperactivity disorder: Arizona State University; 2014. 98. Chang Y-K, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain research. 2012;1453:87-101. 99. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological science. 2003;14:125-130. 100. Ludyga S, Gerber M, Brand S, Holsboer‐Trachsler E, Pühse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta‐analysis. Psychophysiology. 2016;53:1611-1626. 101. LaCount PA, Hartung CM, Vasko JM, Serrano JW, Wright HA, Smith DT. Acute effects of physical exercise on cognitive and psychological functioning in college students with attention-deficit/hyperactivity disorder. Mental Health and Physical Activity. 2022;22:100443. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85238 | - |
dc.description.abstract | 研究背景:注意力不足過動症為常見神經發展障礙疾病,全球成人盛行率為2.58%,衛福部統計顯示,台灣成人盛行率為3-4%。注意力不足過動症所伴隨的認知功能變化,包含動作學習、工作記憶和反應抑制等,是近幾年極受關注的議題。過去研究指出,有氧運動對於人類之認知功能影響非常顯著,這可能與有氧運動對於大腦之神經生理作用相關。然而目前未有系統性的研究,針對單次性有氧運動對於成人注意力不足過動症患者之大腦神經生理作用與認知行為的表現進行探討。 研究目的:本研究將結合非侵入性腦刺激術與認知行為測驗,探討有單次性有氧運動對於成人注意力不足過動症患者之大腦皮質興奮性與認知功能之影響。 研究方法:本研究將以隨機分配之實驗設計,共招募8位健康年輕成年人與8位成人注意力不足過動症患者,受試者將參與四次的實驗,每次實驗間隔至少一週,受試者將參與兩次的有氧運動介入(騎室內腳踏車30分鐘)與兩次的控制組介入(坐在舒適的椅子上休息30分鐘)。研究人員將會在介入前後評估受試者之大腦皮質興奮性與認知功能。 評估工具為經顱磁刺激(大腦皮質興奮性)、序列反應作業(內隱動作學習)、3-Back task(工作記憶)和停止信號作業(反應抑制)。使用2X2混合模型ANOVA進行統計分析,當顯著差異時進行配對t檢驗,顯著水準皆設定為0.05。 研究結果:主要結果顯示運動前,在大腦皮質興奮性,與對照組相比時,注意力不足過動症組表現出較低的短間隔皮質內抑制和較高的皮質內促進 (p<.05; p<.05) ;在內隱運動學習測驗上,有較高錯誤率和較長反應時間。但在工作記憶和反應抑制測驗上,兩組並無顯著差異。 此外,在單次有氧運動後,與對照組相比,注意力不足過動症組明顯提升短間隔皮質內抑制和減少皮質內促進 (p<.05; p<.05);在內隱運動學習測驗上,呈現較高錯誤率 (p<.05),但反應時間顯著性減少 (p<.05)。在工作記憶和反應抑制測驗上,兩組仍無顯著差異。 結論:在單次有氧運動後,注意力不足過動症組短間隔皮質內抑制明顯升高,皮質內促進降低,認知測驗上的反應時間加快。本研究顯示有氧運動可為成人注意力不足過動治療方式之一,其優點為成本低、易於實施和非侵入性治療。此外,本研究針對有氧運動對成人注意力不足過動症的相關神經生理過程,提供部分實證。 | zh_TW |
dc.description.abstract | Backgrounds:Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders. The global prevalence of ADHD in adults is 2.58%. The prevalence of ADHD is 3-4% according to the Ministry of Health and Welfare in Taiwan. The deficits in cognitive function in adults ADHD such as implicit motor learning, working memory and response inhibition have been a great concern in recent years. Aerobic exercise has a significant impact on human cognitive function. The underlying mechanism might be the positive effects of aerobic exercise on neurophysiological system in humans. However, there is few research explore the effects of acute aerobic exercise on the brain neurophysiology and cognitive performance in adults ADHD. Purpose:This study will integrate non-invasive brain stimulation and cognitive tasks to explore the effects of acute aerobic exercise on the cortical excitability and cognitive function in young adults with ADHD. Methods:Eight ADHD subjects and 8 matched healthy controls were assessed by transcranial magnetic stimulation (TMS) and cognitive function before and after exercise and control (rest) intervention. TMS was used to assess cortical excitability, as well as the Serial reaction time task (SRTT) for implicit motor learning, the 3-back task for working memory, and the Stop signal task (SST) for response inhibition. A 2 (group: ADHD/control group) X 2 (condition: moderate aerobic exercise/control) mixed model ANOVA was applied to investigate the outcome of group and conditions, and the paired t-test was performed when ANOVA reveal significant difference on conditions (moderate aerobic exercise/control). Results:The main findings found that the ADHD group showed lower short-interval cortical inhibition (SICI) and higher intracortical facilitation (ICF) with TMS (p<.05; p<.05), as well as a higher error rate and longer response time on implicit motor learning (p<.05; p<.05) when compared to controls and no differ on working memory and response inhibition before intervention. Furthermore, after acute exercise, the ADHD group had significantly enhanced SICI and diminished ICF which compared to control group (p<.05; p<.05). The ADHD group still makes more mistakes on implicit motor learning (p<.05), but their reaction time quickly on implicit motor learning (p<.05) following exercise and still non-significant on working memory and response inhibition. Conclusion:the ADHD group had considerably higher SICI, lower ICF and faster reaction time after acute exercise. The present study explored the effect of acute exercise on cortical excitability and in adult ADHD subjects. Aerobic exercise may be useful as a supplementary therapy because of its low cost, easy implementation, and non-invasiveness. Even though, it provides a cue for the related neurophysiological processes of adult ADHD after aerobic exercise. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:52:12Z (GMT). No. of bitstreams: 1 U0001-0108202215132700.pdf: 5026839 bytes, checksum: 8e8cec705bbe8b6f67486f0b55552cb1 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………….i 誌謝 ………………………………………………………………………………….iii Abstract (Chinese)…………………………………………………………………….iv Abstract (English)…………………………………………………….…..…………...vi Chapter 1. Introduction………………………………………………….………..……1 1.1 Research background…………………………………………….………..….…1 1.2 Purposes ……………………………………………………….……….…...…..3 1.3 Hypotheses ……………………………………………………….......….….…..3 1.4 Important of the study ………………………………………………..….......….4 Chapter 2. Literature review ………………………………………..………...………..5 2.1 The core symptoms of ADHD…………….…………..………..….…...………..5 2.2 The deficits in cognitive function of ADHD …………….……….…...…………5 2.3 The neurophysiological mechanisms of ADHD………………….…….………..8 2.4 The positive effects of aerobic Exercise ………………….…………...…...…..10 2.5 The effects of physical exercise on adults with ADHD……………………..….13 Chapter 3. Research Design and methods …………….……………………..…….…15 3.1 Participants ……………………………………………………………….……15 3.2 Experimental procedures ………….………………...…………………………16 3.3 Intervention ………………….………………………...………………………17 3.4 Assessments…………………………………………...……………….………17 3.5 Data analysis………………………………………...……..……………..……23 Chapter 4. Results ……………………………………..……………………..………25 4.1 Basic demographic of participants……………………………………………..25 4.2 Acute exercise-related Cortical excitability measures……………………….…25 4.3 Acute exercise-related cognitive tasks measures………………………………31 Chapter 5. Discussion ……………..…………………..……………………..………37 5.1 Statement of principal finding(s)…………………………………………….…37 5.2 Comparison with previous work……………………………………………….37 5.3 Limitation……………………………………………………………...………41 5.4 Clinical implications and future work…………………………………………42 5.5 Conclusion……………………………………………………………………..42 Reference …………………………………………………….………………………44 Appendix……………………………………………………………………………..59 1. Figures and tables of this study ……………………………………………….59 2. 研究受試者說明暨同意書 …………………………………………………..81 3. 研究倫理委員會臨床試驗研究許可書………………………………………89 | |
dc.language.iso | en | |
dc.title | 單次有氧運動對於青年注意力不足過動症患者之大腦神經生理與認知功能之介入成效 | zh_TW |
dc.title | Effects of a single bout of aerobic exercise on brain physiology and cognitive functions in youth attention deficit hyperactivity disorder | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪川茹(Chuan-Ru Hong),楊立光(Li-Guang Yang),劉宴齊(Yan-Ci Liou) | |
dc.subject.keyword | 注意力不足過動症,急性運動,有氧運動,經顱磁刺激,認知功能,大腦皮質興奮性, | zh_TW |
dc.subject.keyword | ADHD,acute exercise,aerobic exercise,TMS,cognitive function,cortical excitability, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU202201934 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-02 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-02 | - |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0108202215132700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。