Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85230
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益(Rui-Yi Zhang)
dc.contributor.authorYa-Di Xuen
dc.contributor.author徐雅迪zh_TW
dc.date.accessioned2023-03-19T22:51:43Z-
dc.date.copyright2022-08-05
dc.date.issued2022
dc.date.submitted2022-08-01
dc.identifier.citation[1]F. Ricci, L. Rokach, and B. Shapira, Recommender Systems Handbook. 2015. [2]C. Chen, K. C.-C. Chang, Q. Li, and X. Zheng, 'Semi-supervised Learning Meets Factorization: Learning to Recommend with Chain Graph Model,' ACM Trans. Knowl. Discov. Data, vol. 12, no. 6, p. Article 73, 2018, doi: 10.1145/3264745. [3]D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, 'Using collaborative filtering to weave an information tapestry,' Commun. ACM, vol. 35, no. 12, pp. 61–70, 1992, doi: 10.1145/138859.138867. [4]G. Hu, Y. Zhang, and Q. Yang, 'CoNet: Collaborative Cross Networks for Cross-Domain Recommendation,' presented at the Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 2018. [Online]. Available: https://doi.org/10.1145/3269206.3271684. [5]W. Pan, 'A survey of transfer learning for collaborative recommendation with auxiliary data,' Neurocomputing, vol. 177, pp. 447-453, 2016. [6]F. Zhu, Y. Wang, C. Chen, G. Liu, M. Orgun, and J. Wu, 'A deep framework for cross-domain and cross-system recommendations,' arXiv preprint arXiv:2009.06215, 2020. [7]N. Biadsy, L. Rokach, and A. Shmilovici, 'Transfer learning for content-based recommender systems using tree matching,' in International Conference on Availability, Reliability, and Security, 2013: Springer, pp. 387-399. [8]Z. Z. Xu, H. Z. Jiang, X. J. Kong, J. L. Kang, W. Wang, and F. Xia, 'Cross-Domain Item Recommendation Based on User Similarity,' (in English), Comput Sci Inf Syst, vol. 13, no. 2, pp. 359-373, Jun 2016. [Online]. Available: <Go to ISI>://WOS:000380031500003. [9]Q. Zhang, J. Lu, D. S. Wu, and G. Q. Zhang, 'A Cross-Domain Recommender System With Kernel-Induced Knowledge Transfer for Overlapping Entities,' (in English), Ieee T Neur Net Lear, vol. 30, no. 7, pp. 1998-2012, Jul 2019. [Online]. Available: <Go to ISI>://WOS:000472605500007. [10]X. Yu, Y. Chu, F. Jiang, Y. Guo, and D. W. Gong, 'SVMs Classification Based Two-side Cross Domain Collaborative Filtering by inferring intrinsic user and item features,' (in English), Knowl-Based Syst, vol. 141, pp. 80-91, Feb 1 2018. [Online]. Available: <Go to ISI>://WOS:000423648300007. [11]N. D. Vo, M. S. Hong, and J. J. Jung, 'Implicit Stochastic Gradient Descent Method for Cross-Domain Recommendation System,' (in English), Sensors-Basel, vol. 20, no. 9, May 2020. [Online]. Available: <Go to ISI>://WOS:000537106200074. [12]P. Hao, G. Q. Zhang, L. Martinez, and J. Lu, 'Regularizing Knowledge Transfer in Recommendation With Tag-Inferred Correlation,' (in English), Ieee T Cybernetics, vol. 49, no. 1, pp. 83-96, Jan 2019. [Online]. Available: <Go to ISI>://WOS:000454242300007. [13]B. Li, 'Cross-domain collaborative filtering: A brief survey,' in 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, 2011: IEEE, pp. 1085-1086. [14]I. Cantador, I. Fernández-Tobías, S. Berkovsky, and P. Cremonesi, 'Cross-domain recommender systems,' in Recommender systems handbook: Springer, 2015, pp. 919-959. [15]'Amazon數據集.' https://jmcauley.ucsd.edu/data/amazon/ (accessed. [16]'豆瓣數據集.' https://www.csuldw.com/2019/09/08/2019-09-08-moviedata-10m/ (accessed. [17]'Epinions數據集.' https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm (accessed. [18]'MovieLens數據集.' https://grouplens.org/datasets/movielens/ (accessed. [19]'Netflix數據集.' https://www.kaggle.com/shivamb/netflix-shows (accessed. [20]'Library Thing數據集.' https://data.bathhacked.org/datasets/library-thing-books-set-in-bath (accessed. [21]'Book-Crossing數據集.' http://www2.informatik.uni-freiburg.de/~cziegler/BX/ (accessed. [22]'Last.FM數據集.' http://millionsongdataset.com/lastfm/ (accessed. [23]'Yahoo! Music數據集.' https://webscope.sandbox.yahoo.com/catalog.php?datatype=c (accessed. [24]'Twitter.' https://twitter.com/ (accessed. [25]'Weibo.' https://weibo.com/ (accessed. [26]陳雷慧, 匡俊, 陳輝, 曾煒, 鄭建兵, and 高明, '跨領域推薦技術綜述,' (in chi), 華東師範大學學報(自然科學版), no. 5, pp. 101-116,137, 2017, doi: 10.3969/j.issn.1000-5641.2017.05.010. [27]B. Li, Q. Yang, and X. Xue, 'Transfer learning for collaborative filtering via a rating-matrix generative model,' in Proceedings of the 26th annual international conference on machine learning, 2009, pp. 617-624. [28]S. Berkovsky, T. Kuflik, and F. Ricci, 'Cross-domain mediation in collaborative filtering,' in International Conference on User Modeling, 2007: Springer, pp. 355-359. [29]S. Berkovsky, T. Kuflik, and F. Ricci, 'Mediation of user models for enhanced personalization in recommender systems,' User Modeling and User-Adapted Interaction, vol. 18, no. 3, pp. 245-286, 2008. [30]A. P. Singh and G. J. Gordon, 'Relational learning via collective matrix factorization,' presented at the Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, Las Vegas, Nevada, USA, 2008. [Online]. Available: https://doi.org/10.1145/1401890.1401969. [31]W. Pan and Q. Yang, 'Transfer learning in heterogeneous collaborative filtering domains,' Artificial intelligence, vol. 197, pp. 39-55, 2013. [32]X. Xin, Z. Liu, C.-Y. Lin, H. Huang, X. Wei, and P. Guo, 'Cross-domain collaborative filtering with review text,' in Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015. [33]T. Song, Z. Peng, S. Wang, W. Fu, X. Hong, and S. Y. Philip, 'Based cross-domain recommendation through joint tensor factorization,' in International conference on database systems for advanced applications, 2017: Springer, pp. 525-540. [34]A. Taneja and A. Arora, 'Cross domain recommendation using multidimensional tensor factorization,' (in English), Expert Syst Appl, vol. 92, pp. 304-316, Feb 2018. [Online]. Available: <Go to ISI>://WOS:000414107100024. [35]M. Jiang, P. Cui, X. M. Chen, F. Wang, W. W. Zhu, and S. Q. Yang, 'Social Recommendation with Cross-Domain Transferable Knowledge,' (in English), Ieee T Knowl Data En, vol. 27, no. 11, pp. 3084-3097, Nov 2015. [Online]. Available: <Go to ISI>://WOS:000362943700017. [36]D. Yang, J. He, H. Qin, Y. Xiao, and W. Wang, 'A graph-based recommendation across heterogeneous domains,' in Proceedings of the 24th ACM international on conference on information and knowledge management, 2015, pp. 463-472. [37]I. Fernández-Tobías, I. Cantador, and L. Plaza, 'An emotion dimensional model based on social tags: Crossing folksonomies and enhancing recommendations,' in International Conference on Electronic Commerce and Web Technologies, 2013: Springer, pp. 88-100. [38]A. Loizou, 'How to recommend music to film buffs: enabling the provision of recommendations from multiple domains,' University of Southampton, 2009. [39]L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu, 'Personalized recommendation via cross-domain triadic factorization,' in Proceedings of the 22nd international conference on World Wide Web, 2013, pp. 595-606. [40]A. M. Elkahky, Y. Song, and X. He, 'A multi-view deep learning approach for cross domain user modeling in recommendation systems,' in Proceedings of the 24th international conference on world wide web, 2015, pp. 278-288. [41]H. Small, 'Co‐citation in the scientific literature: A new measure of the relationship between two documents,' Journal of the American Society for information Science, vol. 24, no. 4, pp. 265-269, 1973. [42]王玲玉, '國內共引研究的現狀分析,' 情報雜誌, vol. 30, no. 8, pp. 61-65, 2011. [43]H. D. White and B. C. Griffith, 'Author cocitation: A literature measure of intellectual structure,' Journal of the American Society for information Science, vol. 32, no. 3, pp. 163-171, 1981. [44]M. M. Kessler, 'An experimental study of bibliographic coupling between technical papers,' MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB, 1962. [45]M. Callon, J.-P. Courtial, W. A. Turner, and S. Bauin, 'From translations to problematic networks: An introduction to co-word analysis,' Social science information, vol. 22, no. 2, pp. 191-235, 1983. [46]J. Kleinberg, 'Bursty and hierarchical structure in streams,' Data mining and knowledge discovery, vol. 7, no. 4, pp. 373-397, 2003. [47]王夢婷, '基於突變檢測的主題突變分析研究,' 情報科學, vol. 34, no. 12, pp. 36-39, 2016. [48]J. S. Katz and B. R. Martin, 'What is research collaboration?,' Research policy, vol. 26, no. 1, pp. 1-18, 1997. [49]S. H. Min and I. Han, 'Detection of the customer time-variant pattern for improving recommender systems,' (in English), Expert Syst Appl, vol. 28, no. 2, pp. 189-199, Feb 2005. [Online]. Available: <Go to ISI>://WOS:000226572200001. [50]S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci, 'Privacy-enhanced collaborative filtering,' in Proc. User Modeling Workshop on Privacy-Enhanced Personalization, 2005, p. 46. [51]M. Van Setten, S. M. McNee, and J. A. Konstan, 'Beyond personalization: the next stage of recommender systems research,' in Proceedings of the 10th international conference on Intelligent user interfaces, 2005, pp. 8-8. [52]R. Chung, D. Sundaram, and A. Srinivasan, 'Integrated personal recommender systems,' in Proceedings of the ninth international conference on Electronic commerce, 2007, pp. 65-74. [53]S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari, and J. Guo, 'Cross-domain recommendation via cluster-level latent factor model,' in Joint European conference on machine learning and knowledge discovery in databases, 2013: Springer, pp. 161-176. [54]Y. Zhao, S. Gao, P. Gallinari, and J. Guo, 'A Novel Embedding Model for Relation Prediction in Recommendation Systems,' Ieice T Inf Syst, vol. 100, no. 6, pp. 1242-1250, 2017. [55]D. Cao et al., 'Cross-platform app recommendation by jointly modeling ratings and texts,' ACM Transactions on Information Systems (TOIS), vol. 35, no. 4, pp. 1-27, 2017. [56]Z. Tao, X. Wang, X. He, X. Huang, and T.-S. Chua, 'HoAFM: a high-order attentive factorization machine for CTR prediction,' Inform Process Manag, vol. 57, no. 6, p. 102076, 2020. [57]Q. Zhang, D. Wu, J. Lu, F. Liu, and G. Zhang, 'A cross-domain recommender system with consistent information transfer,' Decision Support Systems, vol. 104, pp. 49-63, 2017, doi: 10.1016/j.dss.2017.10.002. [58]J. X. Zhu et al., 'CHRS: Cold Start Recommendation Across Multiple Heterogeneous Information Networks,' (in English), Ieee Access, vol. 5, pp. 15283-15299, 2017. [Online]. Available: <Go to ISI>://WOS:000408176800035. [59]L. Huang, C. D. Wang, H. Y. Chao, J. H. Lai, and P. S. Yu, 'A Score Prediction Approach for Optional Course Recommendation via Cross-User-Domain Collaborative Filtering,' (in English), Ieee Access, vol. 7, pp. 19550-19563, 2019. [Online]. Available: <Go to ISI>://WOS:000459900900001. [60]L. P. J. Rani, D. J. W. Wise, K. Ajayram, T. Gokul, and B. Kirubakaran, 'Course Recommendation for students using Machine Learning,' in 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 2020: IEEE, pp. 381-384. [61]D. Yao and X. Deng, 'Teaching Teacher Recommendation Method Based on Fuzzy Clustering and Latent Factor Model,' Ieee Access, vol. 8, pp. 210868-210885, 2020. [62] X. H. Wang et al., 'CDLFM: cross-domain recommendation for cold-start users via latent feature mapping,' (in English), Knowl Inf Syst, vol. 62, no. 5, pp. 1723-1750, May 2020. [Online]. Available: <Go to ISI>://WOS:000527968600003. [63]M. Afzal et al., 'Personalization of wellness recommendations using contextual interpretation,' (in English), Expert Syst Appl, vol. 96, pp. 506-521, Apr 15 2018. [Online]. Available: <Go to ISI>://WOS:000424176900036. [64]A. Taqdir et al., 'Clinically Harmonized Wellness Concepts Model for Health and Wellness Services,' (in English), Ieee Access, vol. 6, pp. 26660-26674, 2018. [Online]. Available: <Go to ISI>://WOS:000434944800001. [65]P. L. Gross and E. M. Gross, 'College libraries and chemical education,' Science, vol. 66, no. 1713, pp. 385-389, 1927. [66]B. Loni, Y. Shi, M. Larson, and A. Hanjalic, 'Cross-domain collaborative filtering with factorization machines,' in European conference on information retrieval, 2014: Springer, pp. 656-661. [67]B. Li, X. Zhu, R. Li, and C. Zhang, 'Rating knowledge sharing in cross-domain collaborative filtering,' Ieee T Cybernetics, vol. 45, no. 5, pp. 1068-1082, 2014. [68]X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, 'Neural collaborative filtering,' in Proceedings of the 26th international conference on world wide web, 2017, pp. 173-182. [69]Q. Zhang, D. S. Wu, J. Lu, F. Liu, and G. Q. Zhang, 'A cross-domain recommender system with consistent information transfer,' (in English), Decision Support Systems, vol. 104, pp. 49-63, Dec 2017. [Online]. Available: <Go to ISI>://WOS:000418224000005. [70]G. Ma, Y. Wang, X. Zheng, and M. Wang, 'Leveraging transitive trust relations to improve cross-domain recommendation,' Ieee Access, vol. 6, pp. 38012-38025, 2018. [71]A. Ahmed, K. Saleem, U. Rashid, and A. Baz, 'Modeling Trust-Aware Recommendations With Temporal Dynamics in Social Networks,' (in English), Ieee Access, vol. 8, pp. 149676-149705, 2020. [Online]. Available: <Go to ISI>://WOS:000562067300001. [72]F. Mata, M. Torres-Ruiz, R. Zagal, G. Guzman, M. Moreno-Ibarra, and R. Quintero, 'A cross-domain framework for designing healthcare mobile applications mining social networks to generate recommendations of training and nutrition planning,' (in English), Telemat. Inform., Article vol. 35, no. 4, pp. 837-853, Jul 2018, doi: 10.1016/j.tele.2017.04.005. [73]S. Chakraverty and M. Saraswat, 'Review based emotion profiles for cross domain recommendation,' (in English), Multimed Tools Appl, vol. 76, no. 24, pp. 25827-25850, Dec 2017. [Online]. Available: <Go to ISI>://WOS:000417633500016. [74]N. Mirbakhsh and C. X. Ling, 'Improving Top-N Recommendation for Cold-Start Users via Cross-Domain Information,' (in English), Acm T Knowl Discov D, vol. 9, no. 4, Jun 2015. [Online]. Available: <Go to ISI>://WOS:000355675000008. [75]C. Valliyammai and S. E. Thendral, 'Ontology Matched Cross Domain Personalized Recommendation of Tourist Attractions,' (in English), Wireless Pers Commun, vol. 107, no. 1, pp. 589-602, Jul 2019. [Online]. Available: <Go to ISI>://WOS:000471348600032. [76]M. Li and L. S. Wen, 'An Improved Matrix Approximation for Recommender Systems Based on Context-Information and Transfer Learning,' (in English), Ieee Access, vol. 7, pp. 124256-124267, 2019. [Online]. Available: <Go to ISI>://WOS:000487069800001. [77]M. He, J. Zhang, and J. Zhang, 'Restoring latent factors against negative transfer using partial-adaptation nonnegative matrix factorization,' CCF Trans. Pervas. Comput. Interact., vol. 2, no. 1, pp. 42-50, 2020. [78]M. He, J. L. Zhang, and S. Z. Zhang, 'ACTL: Adaptive Codebook Transfer Learning for Cross-Domain Recommendation,' (in English), Ieee Access, vol. 7, pp. 19539-19549, 2019. [Online]. Available: <Go to ISI>://WOS:000459629000001. [79]J. Q. Wang and J. Lv, 'Tag-informed collaborative topic modeling for cross domain recommendations,' (in English), Knowl-Based Syst, vol. 203, Sep 5 2020. [Online]. Available: <Go to ISI>://WOS:000552126200017. [80]S. Tan, J. Bu, X. Qin, C. Chen, and D. Cai, 'Cross domain recommendation based on multi-type media fusion,' Neurocomputing, vol. 127, pp. 124-134, 2014. [81]A. Arora, V. Taneja, S. Parashar, and A. Mishra, 'Cross-domain based event recommendation using tensor factorization,' Open Computer Science, vol. 6, no. 1, pp. 126-137, 2016. [82]H. Zhang, S. Y. Wei, X. J. Hu, Y. Li, and J. J. Xu, 'On accurate POI recommendation via transfer learning,' (in English), Distrib Parallel Dat, Article vol. 38, no. 3, pp. 585-599, Sep 2020, doi: 10.1007/s10619-020-07299-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85230-
dc.description.abstract傳統個性化推薦存在數據稀疏性以及冷啟動問題,跨域推薦可以整合來自多個領域的數據,為解決這兩個問題提供新的思路與方法,從而提高推薦的準確性與多樣性。目前利用視覺化作為輔助技術的跨域推薦綜合研究甚少,因此本文以Citespace為視覺化輔助,以Web of Science資料庫2000~2020年的相關文獻作為研究對象,通過科學知識圖譜,從宏觀到微觀對文獻的代表國家、關鍵詞、共被引文獻等進行視覺化分析,討論跨域推薦領域常用技術的優劣勢與適用範圍,為當前面臨的挑戰與未來研究的方向提供建議: 1、跨域推薦自2001年誕生,2014年之前發展較為緩慢,因2014年遷移學習技術提出,迅速發展。因此,建議可以合理利用前人的研究結果。 2、成熟的合作網絡可以善用各機構優勢及專業,推進研究發展。因此建議不同機構可以以優勢主題形成合作網絡,例如北京科技大學、雪梨科技大學、浙江大學均擅長遷移學習技術,因此這些機構可以此作為主要研究方向,形成合作網絡。 3、對跨域推薦系統的評價與應用關鍵詞主要集中在冷啟動問題、個性化、社交媒體上。可以預見,個性化的用戶需求結合社交媒體資料的冷啟動問題解決,會在一定程度上推進跨域推薦系統在更多領域的應用與發展。 4、跨域推薦在提高推薦多樣性與系統穩健性的相關研究較少。此外,跨領域也給推薦也帶來了新的問題,例如不同域之間的資料異構性,以及在多個資料來源的情況下,如何平衡多數據源的比例,如何快速處理多個域轉移。 5、藉由傳感器可以將跨域推薦系統應用於其他更多生活場景,例如教育與健康醫療領域與食物、醫療、運動領域結合,提供客製化飲食搭配、疾病預處理、運動建議等與人們生活相關的服務。zh_TW
dc.description.abstractTraditional personalized recommendation suffers from data sparsity and cold start problems. Cross-domain recommendation(CDR) can integrate data from multiple domains and provide new ideas and methods to solve these two problems, thus improving the accuracy and diversity of recommendations. Therefore, in this paper, we use Citespace as the visualization aid and take the relevant literature of the web of science database from 2000 to 2020 as the research object, and conduct the visualization analysis from macro to the micro of the representative countries, keywords, and co-cited literature through scientific knowledge mapping, and discuss the advantages and disadvantages of CDR. The strengths and weaknesses of common techniques in the field of recommendation and their applicability are discussed to provide suggestions for the current challenges and future research directions: 1. CDR has been born in 2001 and developed slowly before 2014, and developed rapidly due to the proposed migration learning techniques in 2014. Therefore, it is suggested that the results of previous studies can be used rationally. 2. A mature collaborative network can make good use of the strengths and specialties of each institution to advance research development. For example, the University of Science and Technology Beijing, University of Technology Sydney, and Zhejiang University all specialize in migratory learning technology, so these institutions can take this as the main research direction and form a cooperative network. 3. The key terms for the evaluation and application of CDR systems are mainly focused on cold start problems, personalization, and social media. It can be expected that personalized user needs to be combined with social media data cold start problem solving, which will to a certain extent promote the application and development of CDR systems in more areas. 4. CDR in improving the recommendation of diversity and system robustness of the relevant research is relatively small. In addition, cross-domain also brings new problems to the recommendation, such as data heterogeneity between different domains, how to balance the ratio of multiple data sources in the case of multiple data sources, and how to quickly handle multiple domain transfers. 5. The sensor can be applied to other CDR systems in more life scenarios, such as education and health care field and food, medical, and sports field combined to provide a customized diet The sensor can be used in other life scenarios, such as education and health care, food, medical care, and sports, to provide customized diet, disease pre-treatment, and sports advice.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:51:43Z (GMT). No. of bitstreams: 1
U0001-2807202223561800.pdf: 2192799 bytes, checksum: ecabfec7d2f86b7111aefcf71f43e327 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文組織架構 3 第二章 跨域推薦系統的介紹 5 2.1 跨域推薦系統研究的基本組成部分 5 2.1.1 領域定義 5 2.1.2 常用數據集 6 2.1.3 用戶-項目重疊程度 8 2.2 跨域推薦系統面臨的挑戰 9 2.3 跨域推薦技術介紹 9 第三章 視覺化工具Citespace介紹 12 3.1 Citespace的分析原理 12 3.1.1 引文分析 12 3.1.2 共被引分析 13 3.1.3 耦合分析 14 3.1.4 共詞分析 15 3.2 Citespace的關鍵技術 16 3.2.1 突變性檢測算法 16 3.2.2 中介中心度 16 3.2.3 聚類分析 16 3.3 Citespace使用流程 17 3.4 Citespace的界面及功能介紹 18 3.4.1 數據閾值設定 19 3.4.2 網絡功能裁剪設定 19 3.5 實驗分析前處理 20 3.5.1 資料收集 20 3.5.2 資料處理 21 第四章 實驗與分析 22 4.1 研究方法 22 4.2 研究結果 22 4.2.1 發文量與時間分佈 22 4.2.2 合作網絡分析 23 4.2.3 文獻共被引分析 34 4.2.4 主題、關鍵詞共現分析 37 4.2.5 研究前沿與趨勢分析 45 第五章 結果與討論 47 第六章 總結與展望 51 6.1 總結 51 6.2 展望 51 參考文獻 53 附錄 58 Citespace使用流程 58
dc.language.isozh-TW
dc.subject可視化分析zh_TW
dc.subject跨域推薦zh_TW
dc.subject研究現狀zh_TW
dc.subject研究趨勢zh_TW
dc.subjectcross-domain recommendationen
dc.subjectvisualization analysisen
dc.subjectresearch trenden
dc.subjectresearch statusen
dc.subjectCitespaceen
dc.title以Citespace分析跨域推薦領域之研究現狀與趨勢zh_TW
dc.titleAnalysis of Research Status and Trends in Cross-Domain Recommendation by Citespaceen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張恆華(Heng-Hua Zhang),林正偉(Zheng-Wei Lin)
dc.subject.keyword跨域推薦,研究現狀,研究趨勢,可視化分析,zh_TW
dc.subject.keywordcross-domain recommendation,Citespace,research status,research trend,visualization analysis,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202201863
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2022-08-05-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-2807202223561800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved