請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85227完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃榮南(Rong-Nan Huang) | |
| dc.contributor.author | Chia-Yang Lin | en |
| dc.contributor.author | 林家揚 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:51:31Z | - |
| dc.date.copyright | 2022-08-10 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-02 | |
| dc.identifier.citation | Ackermann HW, Smirnoff WA. 1983. A morphological investigation of 23 baculoviruses. J Invertebr Pathol 41: 269-280. Adams L, Scott GK, Weinberg CS. 1996. Biphasic modulation of cell growth by recombinant human galectin-1. Bba-Mol Cell Res 1312: 137-144. Ahmad N, Gabius HJ, Sabesan S, Oscarson S, Brewer CF. 2004. Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3. Glycobiology 14: 817-825. Allione A, Wells V, Forni G, Mallucci L, Novelli F. 1998. Beta-galactoside-binding protein (beta GBP) alters the cell cycle, up-regulates expression of the alpha- and beta-chains of the IFN-gamma receptor, and triggers IFN-gamma-mediated apoptosis of activated human T lymphocytes. J Immunol 161: 2114-2119. Amsellem Z, Cohen BA, Gressel J. 2002. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nat Biotechnol 20: 1035-1039. Bailey KL, Falk SP. 2011. Turning research on microbial bioherbicides into commercial products a phoma story. Pest Technol 5(Special Issue 1):73-79 Barondes SH, Castronovo V, Cooper DNW, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K, Leffler H, Liu FT, Lotan R, Mercurio AM, Monsigny M, Pillai S, Poirer F, Raz A, Rigby PWJ, Rini JM, Wang JL. 1994. Galectins - a family of animal beta-galactoside-binding lectins. Cell 76: 597-598. Baumert TF, Ito S, Wong DT, Liang TJ. 1998. Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 72: 3827-3836. Berger I, Fitzgerald DJ, Richmond TJ. 2004. Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22: 1583-1587. Blaser C, Kaufmann M, Muller C, Zimmermann C, Wells V, Mallucci L, Pircher H. 1998. Beta-galactoside binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28: 2311-2319. Blissard GW. 1996. Baculovirus-insect cell interactions. Cytotechnology 20: 73-93. Blissard GW, Rohrmann GF. 1990. Baculovirus diversity and molecular-Biology. Annu Rev Entomol 35: 127-155. Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A. 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut R 22: 35-67. Bonning BC, Hammock BD. 1996. Development of recombinant baculoviruses for insect control. Annu Rev Entomol 41: 191-210. Burgess S. 1977. Molecular weights of Lepidopteran baculovirus DNAs: derivation by electron microscopy. J Gen Virol 37: 501-510. Camby I, Le Mercier M, Lefranc F, Kiss R. 2006. Galectin-1: a small protein with major functions. Glycobiology 16: 137r-157r. Chakraborty A, Dimitroff CJ. 2019. Cancer immunotherapy needs to learn how to stick to its guns. J Clin Invest 129: 5089-5091. Chang JH, Choi JY, Jin BR, Roh JY, Olszewski JA, Seo SJ, O'Reilly DR, Je YH. 2003. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J Invertebr Pathol 84: 30-37. Chen SJ, Chen NT, Wang SH, Hsu JC, Ding WH, Kuo-Huang LL, Huang RN. 2009. Insecticidal action of mammalian galectin-1 against diamondback moth (Plutella xylostella). Pest Manag Sci 65: 923-930. Chitrampalam P, Wu BM, Koike ST, Subbarao KV. 2011. Interactions between Coniothyrium minitans and Sclerotinia minor affect biocontrol efficacy of C. minitans. Phytopathology 101: 358-366. Cho MJ, Cummings RD. 1995. Galectin-1, a beta-galactoside-binding lectin in chinese-hamster ovary cells .1. physical and chemical characterization. J Biol Chem 270: 5198-5206. Choi SH, Kim SY, Park KJ, Kim YJ, Hwang SB. 2004. Hepatitis C virus core protein is efficiently released into the culture medium in insect cells. J Biochem Mol Biol 37: 735-740. Copping LG, Menn JJ. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56: 651-676. Fan YH, Borovsky D, Hawkings C, Ortiz-Urquiza A, Keyhani NO. 2012. Exploiting host molecules to augment mycoinsecticide virulence. Nat Biotechnol 30: 35-37. Fausch SC, Da Silva DM, Eiben GL, Le Poole IC, Kast WM. 2003. HPV protein/peptide vaccines: From animal models to clinical trials. Front Biosci-Landmrk 8: S81-S91. Goulson D. 2013. REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50: 977-987. Gramkow AW, Perecmanis S, Sousa RLB, Noronha EF, Felix CR, Nagata T, Ribeiro BM. 2010. Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virol J 7: 143 (2010). Granados RR, Lawler KA. 1981. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108: 297-308. Graupner PR. 2004. Chlorosis inducing phytotoxic metabolites: New herbicides from phoma macrostoma. Abstr Pap Am Chem S 227: U27-U27. Harper GJ, Comeau PG, Hintz W, Wall RE, Prasad R, Hocker EM. 1999. Chondrostereum purpureum as a biological control agent in forest vegetation management. II. Efficacy on Sitka alder and aspen in western Canada. Can J Forest Res 29: 852-858. Henry M, Beguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A. 2012. A common pesticide decreases foraging success and survival in honey bees. Science 336: 348-350. Hu XH, Chen H, Xu J, Zhao GH, Huang XH, Liu JN, Batool K, Wu CX, Wu SQ, Huang EJ, Wu J, Chowhury M, Zhang J, Guan X, Yu XQ, Zhang LL. 2020. Function of Aedes aegypti galectin-6 in modulation of Cry11Aa toxicity. Pestic Biochem Phys 162: 96-104. Jackson T. 2007. A novel bacterium for control of grass grub. Biol Control: A Global Perspective: 160-168. Kanrar S, Venkateswari J, Kirti PB, Chopra VL. 2002. Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20: 976-981. Korth KL, Levings CS 3rd. 1993. Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae. Proc Natl Acad Sci USA 90 : 3388-3392. Macedo MLR, Damico DCS, Freire MD, Toyama MH, Marangoni S, Novello JC. 2003. Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera : Bruchidae) and Anagasta kuehniella (Lepidoptera : Pyralidae). J Agr Food Chem 51: 2980-2986. Maeda S. 1989. Expression of Foreign Genes in Insects Using Baculovirus Vectors. Annu Rev Entomol 34: 351-372. Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M. 1985. Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315: 592-594. Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P. 2001. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breeding 7: 85-93. Maranga L, Cruz PE, Aunins JG, Carrondo MJ. 2002. Production of core and virus-like particles with baculovirus infected insect cells. Adv Biochem Eng Biotechnol 74: 183-206. Marrone P. 2002. An effective biofungicide with novel modes of action. Pestic Outlook 13: 193-194. Martignoni ME. 1986. A catalog of viral diseases of insects, mites, and ticks. Gen.Tech Rep: PNW-GTR-195. Mccutchen BF, Choudary P, Crenshaw R, Maddox D, Kamita SG, Palekar N, Volrath S, Fowler E, Hammock BD, Maeda S. 1991. Development of a recombinant baculovirus expressing an insect selective neurotoxin - potential for pest-control. Nat Biotechnol 9: 848–852. Miller LK. 1988. Baculoviruses as gene-expression vectors. Annu Rev Microbiol 42: 177-199. Ong CJ, Chui D, Teh HS, Marth JD. 1994. Thymic Cd45 tyrosine phosphatase regulates apoptosis and Mhc-restricted negative selection. J Immunol 152: 3793-3805. Pang Y, Frutos R, Federici BA. 1992. Synthesis and toxicity of full-length and truncated bacterial cryivd mosquitocidal proteins expressed in Lepidopteran cells using a baculovirus vector. J Gen Virol 73: 89-101. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. 1995. Apoptosis of T-cells mediated by galectin-1. Nature 378: 736-739. Rabinovich GA, Ariel A, Hershkovitz R, Hirabayashi J, Kasai KI, Lider O. 1999. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97: 100-106. Rao XJ, Wu P, Shahzad T, Liu S, Chen L, Yang YF, Shi Q, Yu XQ. 2016. Characterization of a dual-CRD galectin in the silkworm Bombyx mori. Dev Comp Immunol 60: 149-159. Ribeiro BM, Crook NE. 1993. Expression of full-length and truncated forms of crystal protein genes from Bacillus Thuringiensis Subsp Kurstaki in a baculovirus and pathogenicity of the recombinant viruses. J Invertebr Pathol 62: 121-130. Roy A, Banerjee S, Majumder P, Das S. 2002. Efficiency of mannose-binding plant lectins in controlling a homopteran insect, the red cotton bug. J Agr Food Chem 50: 6775-6779. Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, Mordoh J, Fainboim L, Podhajcer OL, Rabinovich GA. 2004. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: A potential mechanism of tumor-immune privilege. Cancer Cell 5: 241-251. Sajjan DB, Hinchigeri SB. 2016. Structural organization of baculovirus occlusion bodies and protective role of multilayered polyhedron envelope protein. Food Environ Virol 8: 86-100. Stanley MA. 2003. Progress in prophylactic and therapeutic vaccines for human papillomavirus infection. Expert Rev Vaccines 2: 381-389. Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, Baum LG. 2006. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176: 778-789. StLeger RJ, Joshi L, Bidochka MJ, Roberts DW. 1996. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA 93: 6349-6354. Stowell SR, Dias-Baruffi M, Penttila L, Renkonen O, Nyame AK, Cummings RD. 2004. Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology 14: 157-167. Summers MD, Smith GE. 1987. A manual of methods for baculovirus vectors and insect cell-culture procedures. Tex Aes Bull: 1-56. Tian JH, Patel N, Haupt R, Zhou HX, Weston S, Hammond H, Logue J, Portnoff AD, Norton J, Guebre-Xabier M, Zhou B, Jacobson K, Maciejewski S, Khatoon R, Wisniewska M, Moffitt W, Kluepfel-Stahl S, Ekechukwu B, Papin J, Boddapati S, Wong CJ, Piedra PA, Frieman MB, Massare MJ, Fries L, Bengtsson KL, Stertman L, Ellingsworth L, Glenn G, Smith G. 2021. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun 12: 372. Vail PV, Sutter G, Jay DL, Gough D. 1971. Reciprocal infectivity of nuclear polyhedrosis viruses of cabbage looper and alfalfa looper. J Invertebr Pathol 17: 383-388. VanderWerf HMG. 1996. Assessing the impact of pesticides on the environment. Agr Ecosyst Environ 60: 81-96. Wang X, Shang Y, Chen C, Liu SR, Chang M, Zhang N, Hu HR, Zhang FH, Zhang T, Wang ZY, Liu XJ, Lin Z, Deng F, Wang HL, Zou Z, Vlak JM, Wang ML, Hu ZH. 2019. Baculovirus per os infectivity factor complex: components and assembly. J Virol 93: e02053-18. Weyer U, Knight S, Possee RD. 1990. Analysis of very late gene-expression by Autographa Californica Nuclear Polyhedrosis Virus and the further development of multiple expression vectors. J Gen Virol 71: 1525-1534. Wu D, Murakami K, Liu N, Inoshima Y, Yokoyama T, Kokuho T, Inumaru S, Matsumura T, Kondo T, Nakano K, Sentsui H. 2002. Expression of biologically active recombinant equine interferon-gamma by two different baculovirus gene expression systems using insect cells and silkworm larvae. Cytokine 20: 63-69. Xiang J, Wunschmann S, George SL, Klinzman D, Schmidt WN, LaBrecque DR, Stapleton JT. 2002. Recombinant hepatitis C virus-like particles expressed by baculovirus: utility in cell-binding and antibody detection assays. J Med Virol 68: 537-543. Yang RY, Rabinovich GA, Liu FT. 2008. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10: e17. Zhang LL, Hu XH, Wu SQ, Batool K, Chowdhury M, Lin Y, Zhang J, Gill SS, Guan X, Yu XQ. 2018. Aedes aegypti galectin competes with Cry11Aa for binding to ALP1 to modulate Cry toxicity. J Agr Food Chem 66: 13435-13443. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85227 | - |
| dc.description.abstract | 在傳統農業模式下,化學農藥導致過多的環境問題,取而代之興起生物性農藥(Bio-pesticide),生物性農藥不僅具有相當高的專一性,也不會有環境汙染的問題,基於環境和生態保護的理念,生物性農藥一直是農業上的發展重點。在生物性農藥中,病毒為其中一個不可或缺的重要角色,害蟲在病毒感染後會出現生長異常、食慾不振等病徵,並且病毒會在寄主害蟲死亡之後進一步的擴散出去,繼續感染其它寄主,達到永續、長期控制害蟲族群的目的。現行用於蟲害防治上,最普遍的節肢動物病毒為加州苜蓿夜蛾核多角體病毒Autographa californica multiple nucleopolyhedrovirus (AcMNPV),具有感染多種鱗翅目害蟲的能力,雖此核多角體病毒在生物防治上具有相當程度的潛力,但在實際田間應用卻有效率過低的瓶頸,加上田間的環境因素和作物種類不同的影響,有效防治需要的時間可能會更長,因此很多關於核多角體病毒在防治上的研究都試著縮短其作用時間。為了增強該病毒的防治應用潛力,我們利用桿狀病毒的表現系統 (Baculovirus expression vector system)來表現Galectin-1蛋白質。Galectin-1是一種 β-半乳糖苷的結合蛋白(beta-galactoside-binding protein),可以結合鱗翅目害蟲中腸內的圍食膜,導致圍食膜上出現孔洞而瓦解,出現停止進食且最終致死的現象。我們的試驗結果顯示帶有galectin-1基因重組的核多角體病毒對多種鱗翅類害蟲的防治成效顯著的提升,基因改造的重組病毒能夠在較短的時間內將寄主殺死,而病毒感染後未立即死亡的寄主,其取食能力也大幅下降,達到降低經濟危害之目的。試驗結果也顯示 Galectin-1主要透過抑制寄主免疫系統而提升桿狀病毒之致病能力,寄主細胞感染重組病毒後,其免疫相關基因的表現量有顯著的下降,此一結果證實Galectin-1重組的桿狀病毒具有抑制昆蟲免疫系統的能力,使得寄主變得更加虛弱,也更容易被其他病原菌二次侵入,顯示Galectin-1能夠有效地增強桿狀病毒之防治效率。 | zh_TW |
| dc.description.abstract | Developing bio-pesticides is an important area of research in agriculture for which viruses are an essential tool. Infection by entomological pathogenic viruses kills agricultural pests, and viral progenies are disseminated to infect more pests, eventually achieving long-term pest control in the field. Of the current virus-based pest control models, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most studied bio-pesticide. AcMNPV belongs to the family Baculoviridae and can infect many lepidopterans. Although AcMNPV has been previously demonstrated as a potential pest-control agent, its long infection cycle has made field application challenging. To overcome this hurdle, we generated a Galectin-1 recombinant baculovirus. Galectin-1 is a mammalian -galactoside-binding protein that could bind to the peritrophic matrix in the midgut of pest lepidopterans and induces perforation of the membrane. Hosts infected with this recombinant virus exhibited reduced appetite and died sooner in both laboratory and small-scale field studies, suggesting that the overexpression of Galectin-1 can more efficiently eliminate pest hosts. Moreover, the immune system of hosts infected with recombinant baculovirus carrying the galectin-1 gene was significantly suppressed, making hosts more vulnerable to secondary infection. To our knowledge, this is the first study explored the effect of Galectin-1 on insect immune systems and demonstrated that the potential of baculovirus for pest control can be improved by overexpressing mammalian Galectin-1. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:51:31Z (GMT). No. of bitstreams: 1 U0001-2907202213002900.pdf: 3812075 bytes, checksum: d574582368205fd173814d17705c6322 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書…………………………………………………………………………i 中文摘要………………………………………………………………………………...ii Abstract…………………………………………………………………………………iii 目錄……………………………………………………………………………………..iv 圖次……………………………………………………………………………………..vi 壹、前言…………………………………………………………………………………1 貳、往昔研究……………………………………………………………………………5 2.1 桿狀病毒…………………………………………………………………………..5 2.2 加州苜蓿夜蛾核多角體病毒(AcMNPV) ………………………………………..5 2.3 桿狀病毒之蛋白質表現系統……………………………………………………..7 2.4 Galectins 與 Galectin-1……………………………………………………………9 2.5 生物製劑於害蟲防治之應用……………………………………………………11 參、材料與方法………………………………………………………………………...14 3.1 Galectin-1 重組桿狀病毒之建構與培養………………………………………..14 3.2 Galectin-1 蛋白質之表現………………………………………………………..14 3.3 斜紋夜蛾之飼養…………………………………………………………………15 3.4 斜紋夜蛾之存活率、葉片啃食面積及體長之測定……………………………..16 3.5 病毒感染細胞之核酸萃取………………………………………………………16 3.6 基因表現量之測定………………………………………………………………17 3.7 吞噬作用之測定…………………………………………………………………17 3.8 模擬田間試驗……………………………………………………………………18 3.9 秋行軍蟲及小菜蛾之存活率測定………………………………………………18 3.10 Galectin-1 重組桿狀病毒對於非寄主昆蟲之影響測定………………………19 3.11 Galectin-1 重組桿狀病毒與蘇力菌對斜紋夜蛾幼蟲之生長影響比較………19 3.12 Galectin-1 重組桿狀病毒感染家蠶細胞之病毒力價測定……………………19 3.13 統計分析………………………………………………………………………..20 肆、結果………………………………………………………………………………..21 4.1 攜帶 galectin-1 基因重組桿狀病毒之建構……………………………………..21 4.2 攜帶 galectin-1 基因之重組桿狀病毒對斜紋夜蛾之毒殺效果………………..21 4.3攜帶galectin-1基因之重組桿狀病毒對斜紋夜蛾免疫系統之影響…………...22 4.3.1 病毒感染後體液性免疫途徑之基因表現量變化………………………….22 4.3.2 病毒感染後細胞性免疫之活性變化……………………………………….22 4.4攜帶galectin-1基因之重組桿狀病毒作為生物農藥之潛力…………………...23 4.4.1 模擬田間試驗之防治效果………………………………………………….23 4.4.2 攜帶 galectin-1 基因之重組桿狀病毒對於其他害蟲及非標的生物之影響. 攜帶 galec…………………………………………………………..……......................23 4.4.3 與市售生物農藥蘇力菌之比較…………………………………………….24 4.5攜帶galectin-1基因之重組桿狀病毒對於家蠶細胞之感染能力……………...24 伍、討論………………………………………………………………………………..25 陸、參考文獻…………………………………………………………………………..52 柒、附錄………………………………………………………………………………..60 附錄一、實驗使用之引子對…………………………………………………………...60 附錄二、投稿中之期刊文章…………………………………………………………...61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 桿狀病毒 | zh_TW |
| dc.subject | 蛋白質表現 | zh_TW |
| dc.subject | Galectin-1 | zh_TW |
| dc.subject | 生物防治 | zh_TW |
| dc.subject | 圍食膜 | zh_TW |
| dc.subject | 免疫系統 | zh_TW |
| dc.subject | immune system | en |
| dc.subject | baculovirus | en |
| dc.subject | bio-control | en |
| dc.subject | Galectin-1 | en |
| dc.subject | β-galactosyl binding protein | en |
| dc.title | 桿狀病毒表現醣類結合蛋白提升殺蟲活性之研究 | zh_TW |
| dc.title | Enhancing the insecticidal potential of baculovirus by overexpressing the mammalian β-galactosyl binding protein galectin-1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 吳岳隆(Yueh-Lung Wu) | |
| dc.contributor.oralexamcommittee | 乃育昕(Yu-Shin Nai),趙裕展 (Yu-Chan Chao),謝奉家(Feng-Chia Hsieh) | |
| dc.subject.keyword | 桿狀病毒,蛋白質表現,Galectin-1,生物防治,圍食膜,免疫系統, | zh_TW |
| dc.subject.keyword | baculovirus,Galectin-1,β-galactosyl binding protein,bio-control,immune system, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202201876 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202213002900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
