請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85217完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱振豪(Chenhao Chiu) | |
| dc.contributor.author | Ching-Hung Lai | en |
| dc.contributor.author | 賴景泓 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:50:53Z | - |
| dc.date.copyright | 2022-08-10 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-02 | |
| dc.identifier.citation | Adler-Bock, M., Bernhardt, B. M., Gick, B., & Bacsfalvi, P. (2007). The use of ultrasound in remediation of North American English /r/ in 2 adolescents. American Journal of Speech-Language Pathology, 16(2), 128–139. Aliaga-García, C., & Mora, J. C. (2009). Assessing the effects of phonetic training on L2 sound perception and production. In O. B. Barbara, S. R. Andreia, & A. W. Michael (Eds.) Recent research in second language phonetics/phonology: Perception and production. Cambridge Scholars Publishing. Armstrong, C. (2018). Ultrasound Visual Biofeedback and Accent Modification: Effects on Consonant and Vowel Accuracy for Mandarin English Language Learners. Ph.D. thesis, Duquesne University. Atal, B. S., Chang, J. J., Mathews, M. V., & Tukey, J. W. (1978). Inversion of articulatory-to-acoustic transformation in the vocal tract by a computer-sorting technique. The Journal of the Acoustical Society of America, 63(5), 1535–1555. Bacsfalvi, P. (2010). Attaining the lingual components of /r/ with ultrasound for three adolescents with cochlear implants. Canadian Journal of Speech-Language Pathology & Audiology, 34(3), 206–217. Bacsfalvi, P., & Bernhardt, B. M. (2011). Long-term outcomes of speech therapy for seven adolescents with visual feedback technologies: Ultrasound and electropalatography. Clinical Linguistics & Phonetics, 25(11-12), 1034–1043. Bacsfalvi, P., Bernhardt, B. M., & Gick, B. (2007). Electropalatography and ultrasound in vowel remediation for adolescents with hearing impairment. Advances in Speech Language Pathology, 9(1), 36–45. Benway, N. R., Hitchcock, E. R., McAllister, T., Feeny, G. T., Hill, J., & Preston, J. L. (2021). Comparing biofeedback types for children with residual /ɹ/ errors in American English: A single-case randomization design. American journal of speech-language pathology, 30(4), 1819–1845. Bernhardt, B., Bacsfalvi, P., Gick, B., & Radanov, B. (2005). Exploring the use of electropalatography and ultrasound in speech habilitation. Journal of speech-language pathology and audiology, 29(4), 169–182. Bernhardt, B., Gick, B., Bacsfalvi, P., & Ashdown, J. (2003). Speech habilitation of hard of hearing adolescents using electropalatography and ultrasound as evaluated by trained listeners. Clinical Linguistics & Phonetics, 17(3), 199–216. Bernhardt, M. B., Bacsfalvi, P., Adler-Bock, M., Shimizu, R., Cheney, A., Giesbrecht, N., O’connell, M., Sirianni, J., & Radanov, B. (2008). Ultrasound as visual feedback in speech habilitation: Exploring consultative use in rural British Columbia, Canada. Clinical Linguistics & Phonetics, 22(2), 149–162. Best, C. T. (1995). A direct realist view of cross-language speech perception. Speech perception and linguistic experience, (pp. 171–206). Bliss, H., Abel, J., & Gick, B. (2018). Computer-assisted visual articulation feedback in L2 pronunciation instruction: A review. Journal of Second Language Pronunciation, 4(1), 129–153. Bradley, L., & Bryant, P. (1985). Rhyme and reason in reading and spelling. In W. Strange (Ed.) Speech Perception and Linguistic Experience: Issues in Cross-Language Speech Research. York Press. Bradlow, A. R., Pisoni, D. B., Akahane-Yamada, R., & Tohkura, Y. (1997). Training Japanese listeners to identify english /ɹ/ and /l/: Iv. some effects of perceptual learning on speech production. The Journal of the Acoustical Society of America, 101(4), 2299–2310. Bressmann, T., Harper, S., Zhylich, I., & Kulkarni, G. V. (2016). Perceptual, durational and tongue displacement measures following articulation therapy for rhotic sound errors. Clinical linguistics & phonetics, 30(3-5), 345–362. Cavin, M. (2015). The use of ultrasound biofeedback for improving english /ɹ/. Working Papers of the Linguistics Circle, 25(1), 32–41. Chao, S.-C., Ochoa, D., & Daliri, A. (2019). Production variability and categorical per- ception of vowels are strongly linked. Frontiers in Human Neuroscience, 13(96). Chao, Y.-j. (1968). A grammar of spoken Chinese. University of Calif. Press. Chen, M. Y. (1984). Abstract symmetry in chinese verse. Linguistic Inquiry, 15(1), 167– 170. Cheng, H.-S., Niziolek, C. A., Buchwald, A., & McAllister, T. (2021). Examining the relationship between speech perception, production distinctness, and production variability. Frontiers in Human Neuroscience, 15. Chiu, C., & Sun, J. T.-S. (2020). On pharyngealized vowels in northern horpa: An acoustic and ultrasound study. The Journal of the Acoustical Society of America, 147(4), 2928–2946. Chiu, C., Wei, P.-C., Noguchi, M., & Yamane, N. (2020). Sibilant fricative merging in Taiwan Mandarin: An investigation of tongue postures using ultrasound imaging. Language and speech, 63(4), 877–897. Chiu, C., Weng, Y., & Chen, B.-w. (2022). Tongue postures and tongue centers: A study of acoustic-articulatory correspondences across different head angles. Frontiers in psychology, 12(768754). Chuang, Y.-Y., & Fon, J. (2010). The effect of prosodic prominence on the realizations of voiceless dental and retroflex sibilants in Taiwan Mandarin spontaneous speech. In Speech Prosody 2010-Fifth International Conference. Cleland, J., Scobbie, J. M., & Wrench, A. A. (2015). Using ultrasound visual biofeedback to treat persistent primary speech sound disorders. Clinical linguistics & phonetics, 29(8-10), 575–597. Cucchiarini, C., Neri, A., & Strik, H. (2009). Oral proficiency training in Dutch L2: The contribution of ASR-based corrective feedback. Speech Communication, 51(10), 853–863. Cutugno, F., & Origlia, A. (2013). Imitation/self-imitation in computer-assisted prosody training for Chinese learners of L2 Italian. In J. Levis, & K. LeVelle (Eds.) Pro- ceedings of the 4th Pronunciation in Second Language Learning and Teaching Conference, (pp. 90–100). Iowa State University. d’Apolito, I. S., Sisinni, B., Grimaldi, M., & Fivela, B. G. (2017). Perceptual and ultrasound articulatory training effects on English L2 vowels production by Italian learners. International Journal of Cognitive and Language Sciences, 11(8), 2174– 2181. Derrick, D., Carignan, C., Chen, W.-r., Shujau, M., & Best, C. T. (2018). Three-dimensional printable ultrasound transducer stabilization system. The Journal of the Acoustical Society of America, 144(5), EL392–EL398. Derwing, T. M., Munro, M. J., & Carbonaro, M. (2000). Does popular speech recognition software work with ESL speech? TESOL quarterly, 34(3), 592–603. Dowd, A., Smith, J., & Wolfe, J. (1998). Learning to pronounce vowel sounds in a foreign language using acoustic measurements of the vocal tract as feedback in real time. Language and Speech, 41(1), 1–20. Duanmu, S. (1990). A formal study of syllable, tone, stress and domain in Chinese languages. Ph.D. thesis, Massachusetts Institute of Technology. Duanmu, S. (2007). The phonology of standard Chinese. OUP Oxford. Fawcett, S., Bacsfalvi, P., & Bernhardt, B. (2008). Ultrasound as visual feedback in speech therapy for /ô/ with adults with Down syndrome. Down Syndrome Quarterly, 10(1), 4–12. Felps, D., Bortfeld, H., & Gutierrez-Osuna, R. (2009). Foreign accent conversion in com- puter assisted pronunciation training. Speech communication, 51(10), 920–932. Flege, J. E. (1995). Second language speech learning: Theory, findings, and problems. Speech perception and linguistic experience: Issues in cross-language research, 92, 233–277. Flege, J. E., Munro, M. J., & Skelton, L. (1992). Production of the word-final english /t/–/d/ contrast by native speakers of English, Mandarin, and Spanish. The Journal of the Acoustical Society of America, 92(1), 128–143. Foss, M., Whitehead, B., Paterson, M., & Whitehead, R. (1990). Ultrasound as a visual feedback aid for the hearing-impaired. Journal of Diagnostic Medical Sonography, 6(2), 80–86. Franken, M. K., Acheson, D. J., McQueen, J. M., Eisner, F., & Hagoort, P. (2017). Individual variability as a window on production-perception interactions in speech motor control. The Journal of the Acoustical Society of America, 142(4), 2007– 2018. Georgeton, L., Paillereau, N., Landron, S., Gao, J., & Kamiyama, T. (2012). Analyse formantique des voyelles orales du français en contexte isolé: à la recherche d’une référence pour les apprenants de fle. In Conférence conjointe JEP-TALN-RECITAL 2012, (pp. 145–152). Germine, L. T., Duchaine, B., & Nakayama, K. (2011). Where cognitive development and aging meet: Face learning ability peaks after age 30. Cognition, 118(2), 201–210. Ghosh, S. S., Matthies, M. L., Maas, E., Hanson, A., Tiede, M., Ménard, L., Guenther, F. H., Lane, H., & Perkell, J. S. (2010). An investigation of the relation between sibilant production and somatosensory and auditory acuity. The Journal of the Acoustical Society of America, 128(5), 3079–3087. Gick, B., Bernhardt, B., Bacsfalvi, P., Wilson, I., & Zampini, M. (2008). Ultrasound imaging applications in second language acquisition. Phonology and second language acquisition, 36(6), 309–322. Gick, B., Campbell, F., Oh, S., & Tamburri-Watt, L. (2006). Toward universals in the gestural organization of syllables: A cross-linguistic study of liquids. Journal of Phonetics, 34(1), 49–72. Gritsyk, O., Kabakoff, H., Li, J. J., Ayala, S., Shiller, D. M., & McAllister, T. (2021). Toward an index of oral somatosensory acuity: Comparison of three measures in adults. Perspectives of the ASHA special interest groups, 6(2), 500–512. Hearnshaw, S., Baker, E., & Munro, N. (2018). The speech perception skills of children with and without speech sound disorder. Journal of Communication Disorders, 71, 61–71. Heng, Q., McCabe, P., Clarke, J., & Preston, J. L. (2016). Using ultrasound visual feed- back to remediate velar fronting in preschool children: A pilot study. Clinical linguistics & phonetics, 30(3-5), 382–397. Heyne, M., & Derrick, D. (2015). Using a radial ultrasound probe’s virtual origin to compute midsagittal smoothing splines in polar coordinates. The Journal of the Acoustical Society of America, 138(6), EL509–EL514. Heyne, M., Derrick, D., & Al-Tamimi, J. (2019). Native language influence on brass instrument performance: An application of generalized additive mixed models (GAMMs) to midsagittal ultrasound images of the tongue. Frontiers in psychol- ogy, 10, 2597. Hitchcock, E. R., & Mcallister Byun, T. (2015). Enhancing generalisation in biofeedback intervention using the challenge point framework: A case study. Clinical linguistics & phonetics, 29(1), 59–75. Hsiao, T.-Y., Wang, C.-L., Chen, C.-N., Hsieh, F.-J., & Shau, Y.-W. (2001). Noninva- sive assessment of laryngeal phonation function using color Doppler ultrasound imaging. Ultrasound in medicine & biology, 27(8), 1035–1040. Hu, C.-F. (2010). Phonological bases for L2 morphological learning. Journal of psycholinguistic research, 39(4), 305–322. Hummel, K. M. (2009). Aptitude, phonological memory, and second language proficiency in nonnovice adult learners. Applied Psycholinguistics, 30(2), 225–249. Iskarous, K. (2005). Patterns of tongue movement. Journal of Phonetics, 33(4), 363–381. Jackson, M. T.-T., & McGowan, R. S. (2012). A study of high front vowels with articulatory data and acoustic simulations. The Journal of the Acoustical Society of America, 131(4), 3017–3035. Johnson, K., & Bakst, S. (2016). `many to one'in the articulation to acoustics map. UC Berkeley PhonLab Annual Report, 12(1). Kartushina, N., & Frauenfelder, U. H. (2014). On the effects of L2 perception and of individual differences in L1 production on L2 pronunciation. Frontiers in psychology, 5(1246), 1–17. Kartushina, N., Hervais-Adelman, A., Frauenfelder, U. H., & Golestani, N. (2015). The effect of phonetic production training with visual feedback on the perception and production of foreign speech sounds. The journal of the acoustical society of Amer- ica, 138(2), 817–832. Kartushina, N., Hervais-Adelman, A., Frauenfelder, U. H., & Golestani, N. (2016). Mutual influences between native and non-native vowels in production: Evidence from short-term visual articulatory feedback training. Journal of Phonetics, 57, 21–39. Lai, C.-H., & Chiu, C. (to appear). Dorsal harmony in Squliq Atayal: An acoustic and ultrasound study. In Proceedings of the Annual Meetings on Phonology (2021). Lee, S. A. S., Wrench, A., & Sancibrian, S. (2015). How to get started with ultrasound technology for treatment of speech sound disorders. Perspectives on Speech Science and Orofacial Disorders, 25(2), 66–80. Lee-Kim, S.-I. (2014). Revisiting Mandarin ‘apical vowels’: An articulatory and acoustic study. Journal of the International Phonetic Association, 44(3), 261–282. Lennes, M. (2002a). label-from-text. http://phonetics.linguistics.ucla.edu/facilities/ acoustic/praat.html. Accessed: 2020–12-23. Lennes, M. (2002b). mark-pauses. http://phonetics.linguistics.ucla.edu/facilities/acoustic/ praat.html. Accessed: 2020–12-23. Lennes, M. (2002c). segment-to-labeled-wavs. http://phonetics.linguistics.ucla.edu/ facilities/acoustic/praat.html. Accessed: 2020–12-23. Levis, J. (2007). Computer technology in teaching and researching pronunciation. Annual review of applied linguistics, 27, 184–202. Levitt, J. S., & Katz, W. F. (2007). Augmented visual feedback in second language learning: Training Japanese post-alveolar flaps to American English speakers. In Proceedings of Meetings on Acoustics 154ASA, vol. 2(1). Li, J. J., Ayala, S., Harel, D., Shiller, D. M., & McAllister, T. (2019). Individual predictors of response to biofeedback training for second-language production. The Journal of the Acoustical Society of America, 146(6), 4625–4643. Liao, C.-H. (2006). The development of phonological awareness, rapid naming, and orthographic processing in children learning to read Chinese. Ph.D. thesis, University of Alberta. Lin, Y.-H. (1990). Prenuclear glides in chinese. In Mid-America Linguistics Conference. Lin, Y.-H. (2007). The Sounds of Chinese, vol. 1. Cambridge University Press. Lipetz, H. M., & Bernhardt, B. M. (2013). A multi-modal approach to intervention for one adolescent’s frontal lisp. Clinical linguistics & phonetics, 27(1), 1–17. Lohman, D. F. (1996). Spatial ability and g. Human abilities: Their nature and measurement, 97(116), 1. Luo, J., Li, V. G., & Mok, P. P. K. (2020). The perception of Cantonese vowel length contrast by Mandarin speakers. Language and Speech, 63(3), 635–659. Mahalanobis, P. C. (1936). On the generalized distance in statistics. In Proceedings of the National Institute of Science of India. Mann, V. A., & Liberman, I. Y. (1984). Phonological awareness and verbal short-term memory. Journal of learning disabilities, 17(10), 592–599. Matthews, S. (1992). Jyutping 粵拼 – cantonese romanization scheme. URL https://www.lshk.org/jyutping McAllister Byun, T., Hitchcock, E. R., & Swartz, M. T. (2014). Retroflex versus bunched in treatment for rhotic misarticulation: Evidence from ultrasound biofeedback intervention. Journal of Speech, Language, and Hearing Research, 57(6), 2116– 2130. McCullagh, J. (2013). Auditory Acuity, (pp. 312–312). New York, NY: Springer New York. Mielke, J. (2015). An ultrasound study of Canadian French rhotic vowels with polar smoothing spline comparisons. The Journal of the Acoustical Society of America, 137(5), 2858–2869. Modha, G., Bernhardt, B. M., Church, R., & Bacsfalvi, P. (2008). Case study using ultrasound to treat /ɹ/. International Journal of Language & Communication Disorders, 43(3), 323–329. Moisik, S. R., Lin, H., & Esling, J. H. (2014). A study of laryngeal gestures in Mandarin citation tones using simultaneous laryngoscopy and laryngeal ultrasound (SLLUS). Journal of the International Phonetic Association, 44(1), 21–58. Nasir, S. M., & Ostry, D. J. (2006). Somatosensory precision in speech production. Current Biology, 16(19), 1918–1923. Nogita, A., Yamane, N., & Bird, S. (2013). The Japanese unrounded back vowel /ɯ/ is in fact rounded central/front [ɔ-ʏ]. Ultrafest VI Program and Abstract Booklet, (pp. 39–42). Olson, D. J. (2014). Benefits of visual feedback on segmental production in the L2 classroom. Language Learning & Technology, 18(3), 173–192. Perrachione, T. K., Lee, J., Ha, L. Y., & Wong, P. C. (2011). Learning a novel phonological contrast depends on interactions between individual differences and training paradigm design. The Journal of the Acoustical Society of America, 130(1), 461– 472. Petersen, N. R. (2005). create-waveforms. http://phonetics.linguistics.ucla.edu/facilities/ acoustic/praat.html. Accessed: 2022–3-3. Pillot-Loiseau, C., Antolík, T. K., & Kamiyama, T. (2013). Contribution of ultrasound visualisation to improving the production of the French /y/-/u/ contrast by four Japanese learners. In PPLC13: Phonetics, phonology, languages in contact Con- tact: varieties, multilingualism, second language learning. Preston, J. L., Brick, N., & Landi, N. (2013). Ultrasound biofeedback treatment for persisting childhood apraxia of speech. ASHA. Preston, J. L., Hitchcock, E. R., & Leece, M. C. (2020). Auditory perception and ultrasound biofeedback treatment outcomes for children with residual /ô/ distortions: A randomized controlled trial. Journal of Speech, Language, and Hearing Research, 63(2), 444–455. Preston, J. L., Holliman-Lopez, G., & Leece, M. C. (2018a). Do participants report any undesired effects in ultrasound speech therapy? American journal of speech- language pathology, 27(2), 813–818. Preston, J. L., & Leece, M. C. (2017). Intensive treatment for persisting rhotic distortions: A case series. American Journal of Speech-Language Pathology, 26(4), 1066– 1079. Preston, J. L., Leece, M. C., & Maas, E. (2016a). Intensive treatment with ultrasound visual feedback for speech sound errors in childhood apraxia. Frontiers in Human Neuroscience, (p. 440). Preston, J. L., Leece, M. C., & Maas, E. (2017a). Motor-based treatment with and without ultrasound feedback for residual speech-sound errors. International Journal of Language & Communication Disorders, 52(1), 80–94. Preston, J. L., Leece, M. C., McNamara, K., & Maas, E. (2017b). Variable practice to enhance speech learning in ultrasound biofeedback treatment for childhood apraxia of speech: A single case experimental study. American Journal of Speech-Language Pathology, 26(3), 840–852. Preston, J. L., Maas, E., Whittle, J., Leece, M. C., & McCabe, P. (2016b). Limited acquisition and generalisation of rhotics with ultrasound visual feedback in childhood apraxia. Clinical linguistics & phonetics, 30(3-5), 363–381. Preston, J. L., McAllister, T., Phillips, E., Boyce, S., Tiede, M., Kim, J. S., & Whalen, D. H. (2018b). Treatment for residual rhotic errors with high-and low-frequency ultrasound visual feedback: A single-case experimental design. Journal of Speech, Language, and Hearing Research, 61(8), 1875–1892. Preston, J. L., McCabe, P., Rivera-Campos, A., Whittle, J. L., Landry, E., & Maas, E. (2014). Ultrasound visual feedback treatment and practice variability for residual speech sound errors. Journal of Speech, Language, and Hearing Research, 57(6), 2102–2115. Roxburgh, Z., Cleland, J., & Scobbie, J. M. (2016). Multiple phonetically trained-listener comparisons of speech before and after articulatory intervention in two children with repaired submucous cleft palate. Clinical linguistics & phonetics, 30(3-5), 398–415. Šafhalter, A., Vukman, K. B., & Glodež, S. (2016). The effect of 3D-modeling training on students’ spatial reasoning relative to gender and grade. Journal of Educational Computing Research, 54(3), 395–406. Saiegh-Haddad, E. (2019). What is phonological awareness in L2? Journal of Neurolinguistics, 50, 17–27. Saito, H. (2016). Lip movements for an unfamiliar vowel: Mandarin front rounded vowel produced by Japanese speakers. Journal of Speech, Language, and Hearing Research, 59(6), S1558–S1565. Schroeder, M. R. (1967). Determination of the geometry of the human vocal tract by acoustic measurements. The Journal of the Acoustical Society of America, 41(4B), 1002–1010. Schwartz, M. S. (2010). A new improved universally accepted official definition of biofeedback: where did it come from? why? who did it? who is it for? what’s next? Biofeedback, 38(3), 88–90. Shawker, T. H., & Sonies, B. C. (1985). Ultrasound biofeedback for speech training. instrumentation and preliminary results. Investigative Radiology, 20(1), 90–93. Sjolie, G. M., Leece, M. C., & Preston, J. L. (2016). Acquisition, retention, and generalization of rhotics with and without ultrasound visual feedback. Journal of communication disorders, 64, 62–77. Steinlen, A. K. (2005). The influence of consonants on native and non-native vowel pro- duction: A cross-linguistic study, vol. 30. Gunter Narr Verlag. Stone, M. (2005). A guide to analysing tongue motion from ultrasound images. Clinical linguistics & phonetics, 19(6-7), 455–501. Sugden, E., Lloyd, S., Lam, J., & Cleland, J. (2019). Systematic review of ultrasound visual biofeedback in intervention for speech sound disorders. International journal of language & communication disorders, 54(5), 705–728. Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC medical imaging, 15(1), 1–28. Tateishi, M. (2013). Effects of the Use of Ultrasound in Production Training on the Perception of English /ô/ and /l/ by Native Japanese Speakers. Master’s thesis, Graduate Studies. Tiede, M., & Whalen, D. (2015). Getcontours: An interactive tongue surface extraction tool. Proceedings of Ultrafest VII. Tremblay, S., Shiller, D. M., & Ostry, D. J. (2003). Somatosensory basis of speech pro- duction. Nature, 423(6942), 866–869. Tsui, H. M.-L. (2012). Ultrasound speech training for Japanese adults learning English as a second language. Ph.D. thesis, University of British Columbia Vancouver, BC, Canada. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of educational Psychology, 101(4), 817. Wan, I.-P. (1997). The status of prenuclear glides in Mandarin Chinese: Evidence from speech errors. In Chicago Linguistics Society, vol. 33, (pp. 417–428). Wang, S. H., & Wang, C.-C. (2013). The effect of phonetic annotations on the phonological awareness of Chinese speakers. 華語文教學研究, 10(3), 85–120. Wieling, M. (2018). Analyzing dynamic phonetic data using generalized additive mixed modeling: A tutorial focusing on articulatory differences between L1 and L2 speakers of English. Journal of Phonetics, 70, 86–116. Wu, Y., Gendrot, C., Hallé, P., & Adda-Decker, M. (2015). On improving the pronunciation of French /r/in Chinese learners by using real-time ultrasound visualization. In ICPhS 2015 (18th International Congress of Phonetic Sciences). Yoon, S. Y. (2011). Psychometric properties of the revised purdue spatial visualization tests: visualization of rotations (The Revised PSVT: R). Purdue University. Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (frequenzgruppen). The Journal of the Acoustical Society of America, 33(2), 248–248. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85217 | - |
| dc.description.abstract | 超音波生物反饋(ultrasound biofeedback)在語言治療和第二語言發音教學方面被視為一種有效的訓練方法,但過去的研究顯示,個體的訓練成效差異頗大。近期研究提供了數個影響訓練成效的可能因素,例如個人的語言能力和訓練目標的差異。然而,母音差異對訓練成效的影響,以及個體能力與訓練目標差異之間的關聯仍有待釐清。本文旨在探討不同母音維度(vowel dimension)的訓練成效,以及個體能力與不同維度訓練成效之間的關係。28位台灣華語母語者接受20分鐘長的超音波生物反饋訓練,訓練標的為粵語/ɐ/與日語/ɯ/。粵語/ɐ/與日語/ɯ/之所以被選為訓練標的是因為此二母音分別和其最接近的華語母音在母音高低(vowel height)與母音前後(vowel frontness)兩個維度有區別,因此這兩個母音的訓練有助於釐清不同母音維度的訓練成效。至於個體能力方面,本研究評估了四個先行研究提出的預測因子:語音覺識(phonetic awareness)、音韻覺識 (phonological awareness)、體感覺敏銳度(somatosensory acuity)、語言產出變異性(production variability),以及一個新提出的預測因子:空間推理(spatial reasoning)。研究結果顯示,母音高低與前後的訓練效果確實存在顯著差異。其中,母音高低的訓練成效較佳。有關個體語言與空間知識的影響,有些共同預測因子可以同時解釋兩個母音維度的訓練成效(如語音覺識),而有些預測因子則只能解釋特定母音維度的訓練成效(如空間推理)。這些結果為超音波生物反饋提供了臨床和教學應用上的建議,包含訓練目標的選擇、提升訓練成效的方法以及訓練成效的篩選測試。此外,訓練成效和個體語言與空間知識之間的關係也提供語言產出相關理論更多元的證據。 | zh_TW |
| dc.description.abstract | While ultrasound biofeedback is an effective training method for speech therapy and second language (L2) pronunciation teaching, a wide range of individual variation in response to the training was reported. Recent studies showed that several factors have effects on the training response, including individual's linguistic capacity and differences of training targets. However, it remains unclear about the influence of vowel differences on the training effect, and the interaction between individual's abilities and training targets. The current study investigates the ultrasound biofeedback training effect in different vowel dimensions and the relationship between individual's abilities and the training effect in the different vowel dimensions. Twenty-eight Taiwan Mandarin speakers were trained with Cantonese /ɐ/ and Japanese /ɯ/ using ultrasound biofeedback for twenty minutes each. Cantonese /ɐ/ and Japanese /ɯ/ differ with their closest Mandarin counterparts in vowel height and frontness, respectively. Thus, training on these vowels helps with obtaining outcome of training in different vowel dimensions. As for individual's abilities, the current study assessed four previously proposed predictors, i.e., phonetic awareness, phonological awareness, somatosensory acuity, and production variability, and one newly proposed predictor -- spatial reasoning. The results showed that a significant difference was found between the training effect of vowel height and frontness, where the training effect of vowel height was greater than that of vowel frontness. As for the influence of individual's linguistic and spatial knowledge, some common predictors could explain the training effect in both vowel dimensions (e.g., phonetic awareness), while some dimension-dependent predictors could explain the training effect only in a certain vowel dimension (e.g., spatial reasoning). These findings provide suggestions on clinical and pedagogical application of ultrasound biofeedback, including the selection of training targets, the methods for magnifying training effect, and the screening test of training effect. In addition, the relationship between the training effect and individual's linguistic and spatial knowledge also provides different evidence for the theoretical framework of speech production. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:50:53Z (GMT). No. of bitstreams: 1 U0001-2807202221363600.pdf: 26052983 bytes, checksum: 2ffe52d6cc172ed001f0ca15e3432598 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝辭 i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables viii Denotation ix Chapter 1 Introduction 1 1.1 Research background 2 1.2 Aims of the study 4 1.3 Organization 5 Chapter 2 Literature review 6 2.1 Ultrasound biofeedback training 6 2.1.1 Introduction to biofeedback 6 2.1.2 Ultrasound biofeedback 8 2.2 Individual predictors for ultrasound biofeedback training effect 16 2.2.1 Previously proposed predictors 16 2.2.2 Newly proposed predictor – Spatial reasoning 19 2.3 Vowel height vs. vowel frontness 19 Chapter 3 Methodology 23 3.1 Participants 23 3.2 Procedure 24 3.2.1 Session 1: Individual's linguistic and spatial knowledge tests 24 3.2.1.1 Spatial reasoning test 25 3.2.1.2 Phonetic awareness test 26 3.2.1.3 Phonological awareness test 26 3.2.1.4 Somatosensory acuity test 29 3.2.1.5 Production variability test 31 3.2.2 Session 2: Ultrasound biofeedback training 32 3.2.2.1 Stimuli 33 3.2.2.2 Training 34 3.2.2.3 Pre-training and post-training tests 36 3.3 Measurement 39 3.3.1 Individual's linguistic and spatial knowledge tests 39 3.3.2 Ultrasound biofeedback training effects 46 3.4 Data analysis 42 Chapter 4 Results 45 4.1 Individual predictors 45 4.2 Ultrasound biofeedback training effects 46 4.3 Relationship between the training effects and individual predictors 49 4.3.1 Vowel height dimension 50 4.3.2 Vowel frontness dimension 52 4.4 Summary 53 Chapter 5 Discussion 56 5.1 Ultrasound biofeedback training effects in different vowel dimensions 56 5.2 Individual's predictors on the training effects in different vowel dimensions 59 5.2.1 Common predictors 59 5.2.2 Dimension-corresponding predictors 60 5.2.3 Dimension-specific predictors 62 5.3 Implications, limitations, and future directions 65 5.4 Conclusion 68 References 70 Appendix A — Tongue contours of Japanese vowels 79 Appendix B — Participant log 80 Appendix C — Questions in the spatial reasoning (SR) test 81 Appendix D — Questions in the phonetic awareness (PhA) test 87 Appendix E — Questions in the phonological awareness (PA) test 88 Appendix F — By-participant scores in the predictors 90 | |
| dc.language.iso | en | |
| dc.subject | 語言產出變異性 | zh_TW |
| dc.subject | 超音波生物反饋 | zh_TW |
| dc.subject | 母音維度 | zh_TW |
| dc.subject | 空間推理 | zh_TW |
| dc.subject | 語音覺識 | zh_TW |
| dc.subject | 音韻覺識 | zh_TW |
| dc.subject | 體感覺敏銳度 | zh_TW |
| dc.subject | ultrasound biofeedback | en |
| dc.subject | production variability | en |
| dc.subject | somatosensory acuity | en |
| dc.subject | phonological awareness | en |
| dc.subject | phonetic awareness | en |
| dc.subject | spatial reasoning | en |
| dc.subject | vowel dimension | en |
| dc.title | 個體語言與空間知識於超音波生物反饋訓練之成效:不同母音維度的探討 | zh_TW |
| dc.title | The influence of individual's linguistic and spatial knowledge on the training effect of ultrasound biofeedback – An examination on different vowel dimensions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 甯俐馨(Li-Hsin Ning),陳威戎(Wei-Rong Chen) | |
| dc.subject.keyword | 超音波生物反饋,母音維度,空間推理,語音覺識,音韻覺識,體感覺敏銳度,語言產出變異性, | zh_TW |
| dc.subject.keyword | ultrasound biofeedback,vowel dimension,spatial reasoning,phonetic awareness,phonological awareness,somatosensory acuity,production variability, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202201855 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-03 | |
| dc.contributor.author-college | 文學院 | zh_TW |
| dc.contributor.author-dept | 語言學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-10 | - |
| 顯示於系所單位: | 語言學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202221363600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 25.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
