請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85208
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳小梨(Show-Li Chen) | |
dc.contributor.author | Chia-Yang Lin | en |
dc.contributor.author | 林嘉揚 | zh_TW |
dc.date.accessioned | 2023-03-19T22:50:20Z | - |
dc.date.copyright | 2022-10-03 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-03 | |
dc.identifier.citation | Abmayr, S.M., and Pavlath, G.K. (2012). Myoblast fusion: lessons from flies and mice. Development 139, 641-656. Apel, E.D., Glass, D.J., Moscoso, L.M., Yancopoulos, G.D., and Sanes, J.R. (1997). Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18, 623-635. Appleton, B.A., Wu, P., and Wiesmann, C. (2006). The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 14, 87-96. Asfour, H.A., Allouh, M.Z., and Said, R.S. (2018). Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 243, 118-128. Bähler, M., and Rhoads, A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett 513, 107-113. Bassel-Duby, R., and Olson, E.N. (2006). Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75, 19-37. Bevan, S., and Steinbach, J.H. (1977). The distribution of alpha-bungarotoxin binding sites of mammalian skeletal muscle developing in vivo. J Physiol 267, 195-213. Bhuwania, R., Cornfine, S., Fang, Z., Krüger, M., Luna, E.J., and Linder, S. (2012). Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. Journal of cell science 125, 2300-2314. Boillée, S., and Cleveland, D.W. (2004). Gene therapy for ALS delivers. Trends Neurosci 27, 235-238. Braithwaite, A.W., and Harris, A.J. (1979). Neural influence on acetylcholine receptor clusters in embryonic development of skeletal muscles. Nature 279, 549-551. Cary, G.A., and La Spada, A.R. (2008). Androgen receptor function in motor neuron survival and degeneration. Phys Med Rehabil Clin N Am 19, 479-494, viii. Cetin, H., Beeson, D., Vincent, A., and Webster, R. (2020). The Structure, Function, and Physiology of the Fetal and Adult Acetylcholine Receptor in Muscle. Front Mol Neurosci 13, 581097. Chan, Z.C.-K., Kwan, H.-L.R., Wong, Y.S., Jiang, Z., Zhou, Z., Tam, K.W., Chan, Y.-S., Chan, C.B., and Lee, C.W. (2020). Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. Elife 9, e54379. Chang, S.W., Tsao, Y.P., Lin, C.Y., and Chen, S.L. (2011). NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 85, 6750-6763. Chen, H.-H., Han, Y.-J., Wu, T.-C., Yen, W.-S., Lai, T.-Y., Wei, P.-H., Tsai, L.-K., Lai, H.-J., Tsao, Y.-P., and Chen, S.-L. (2022). Nuclear receptor interaction protein (NRIP) as a novel actin-binding protein involved in invadosome formation for myoblast fusion. bioRxiv, 2022.2006.2014.496213. Chen, H.H., Chen, W.P., Yan, W.L., Huang, Y.C., Chang, S.W., Fu, W.M., Su, M.J., Yu, I.S., Tsai, T.C., Yan, Y.T., et al. (2015). NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration. J Cell Sci 128, 4196-4209. Chen, J.C., and Goldhamer, D.J. (2003). Skeletal muscle stem cells. Reprod Biol Endocrinol 1, 101. Chen, Y., Ip, F.C., Shi, L., Zhang, Z., Tang, H., Ng, Y.P., Ye, W.C., Fu, A.K., and Ip, N.Y. (2014). Coronin 6 regulates acetylcholine receptor clustering through modulating receptor anchorage to actin cytoskeleton. J Neurosci 34, 2413-2421. Cheung, C.L., Chan, B.Y., Chan, V., Ikegawa, S., Kou, I., Ngai, H., Smith, D., Luk, K.D., Huang, Q.Y., Mori, S., et al. (2009). Pre-B-cell leukemia homeobox 1 (PBX1) shows functional and possible genetic association with bone mineral density variation. Hum Mol Genet 18, 679-687. Chuang, M.C., Lin, S.S., Ohniwa, R.L., Lee, G.H., Su, Y.A., Chang, Y.C., Tang, M.J., and Liu, Y.W. (2019). Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. J Cell Biol 218, 1670-1685. Daniels, M.P. (2012). The role of agrin in synaptic development, plasticity and signaling in the central nervous system. Neurochem Int 61, 848-853. Dobbins, G.C., Luo, S., Yang, Z., Xiong, W.C., and Mei, L. (2008). alpha-Actinin interacts with rapsyn in agrin-stimulated AChR clustering. Mol Brain 1, 18. Dominguez, R., and Holmes, K.C. (2011). Actin structure and function. Annu Rev Biophys 40, 169-186. Eckert, C., Hammesfahr, B., and Kollmar, M. (2011). A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function. BMC evolutionary biology 11, 1-17. Ehret, G.B., O'Connor, A.A., Weder, A., Cooper, R.S., and Chakravarti, A. (2009). Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur J Hum Genet 17, 1650-1657. Evans, S., Goldman, D., Heinemann, S., and Patrick, J. (1987). Muscle acetylcholine receptor biosynthesis. Regulation by transcript availability. J Biol Chem 262, 4911-4916. Fajardo, V.A., Watson, C.J., Bott, K.N., Moradi, F., Maddalena, L.A., Bellissimo, C.A., Turner, K.D., Peters, S.J., LeBlanc, P.J., and MacNeil, A.J. (2019). Neurogranin is expressed in mammalian skeletal muscle and inhibits calcineurin signaling and myoblast fusion. American Journal of Physiology-Cell Physiology 317, C1025-C1033. Ferraro, E., Molinari, F., and Berghella, L. (2012). Molecular control of neuromuscular junction development. J Cachexia Sarcopenia Muscle 3, 13-23. Gautam, M., Noakes, P.G., Mudd, J., Nichol, M., Chu, G.C., Sanes, J.R., and Merlie, J.P. (1995). Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 232-236. Guerin, C.M., and Kramer, S.G. (2009). Cytoskeletal remodeling during myotube assembly and guidance: coordinating the actin and microtubule networks. Commun Integr Biol 2, 452-457. Han, C.P., Lee, M.Y., Tzeng, S.L., Yao, C.C., Wang, P.H., Cheng, Y.W., Chen, S.L., Wu, T.S., Tyan, Y.S., and Kok, L.F. (2008). Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization. J Exp Clin Cancer Res 27, 25. Hashimoto, K., and Panchenko, A.R. (2010). Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc Natl Acad Sci U S A 107, 20352-20357. Isesele, P.O., and Mazurak, V.C. (2021). Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Front Physiol 12, 682091. Kanning, K.C., Kaplan, A., and Henderson, C.E. (2010). Motor neuron diversity in development and disease. Annu Rev Neurosci 33, 409-440. Kim, J.H., Jin, P., Duan, R., and Chen, E.H. (2015). Mechanisms of myoblast fusion during muscle development. Current opinion in genetics & development 32, 162-170. Kim, N., Stiegler, A.L., Cameron, T.O., Hallock, P.T., Gomez, A.M., Huang, J.H., Hubbard, S.R., Dustin, M.L., and Burden, S.J. (2008). Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135, 334-342. Kim, S., Shilagardi, K., Zhang, S., Hong, S.N., Sens, K.L., Bo, J., Gonzalez, G.A., and Chen, E.H. (2007). A Critical Function for the Actin Cytoskeleton in Targeted Exocytosis of Prefusion Vesicles during Myoblast Fusion. Developmental Cell 12, 571-586. Kishi, M., Kummer, T.T., Eglen, S.J., and Sanes, J.R. (2005). LL5β: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. The Journal of cell biology 169, 355-366. Lautaoja, J.H., Pekkala, S., Pasternack, A., Laitinen, M., Ritvos, O., and Hulmi, J.J. (2020). Differentiation of Murine C2C12 Myoblasts Strongly Reduces the Effects of Myostatin on Intracellular Signaling. Biomolecules 10. Lee, Y., Rudell, J., and Ferns, M. (2009). Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience 163, 222-232. Li, D., and Roberts, R. (2001). WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58, 2085-2097. Li, L., Xiong, W.C., and Mei, L. (2018). Neuromuscular Junction Formation, Aging, and Disorders. Annu Rev Physiol 80, 159-188. Lin, S.-S., Hsieh, T.-L., Liou, G.-G., Li, T.-N., Lin, H.-C., Chang, C.-W., Wu, H.-Y., Yao, C.-K., and Liu, Y.-W. (2020). Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Reports 33, 108310. Lin, W., Burgess, R.W., Dominguez, B., Pfaff, S.L., Sanes, J.R., and Lee, K.F. (2001). Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057-1064. Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17, 107-117. Linder, S., and Aepfelbacher, M. (2003). Podosomes: adhesion hot-spots of invasive cells. Trends in cell biology 13, 376-385. Linder, S., and Wiesner, C. (2016). Feel the force: Podosomes in mechanosensing. Experimental cell research 343, 67-72. Luxenburg, C., Geblinger, D., Klein, E., Anderson, K., Hanein, D., Geiger, B., and Addadi, L. (2007). The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PloS one 2, e179. Marianayagam, N.J., Sunde, M., and Matthews, J.M. (2004). The power of two: protein dimerization in biology. Trends Biochem Sci 29, 618-625. Moradi, F., Copeland, E.N., Baranowski, R.W., Scholey, A.E., Stuart, J.A., and Fajardo, V.A. (2020). Calmodulin-Binding Proteins in Muscle: A Minireview on Nuclear Receptor Interacting Protein, Neurogranin, and Growth-Associated Protein 43. Int J Mol Sci 21. Moransard, M., Borges, L.S., Willmann, R., Marangi, P.A., Brenner, H.R., Ferns, M.J., and Fuhrer, C. (2003). Agrin regulates rapsyn interaction with surface acetylcholine receptors, and this underlies cytoskeletal anchoring and clustering. J Biol Chem 278, 7350-7359. Morgan, J.E., and Partridge, T.A. (2003). Muscle satellite cells. Int J Biochem Cell Biol 35, 1151-1156. Mu, X., Brown, L.D., Liu, Y., and Schneider, M.F. (2007). Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Physiol Genomics 30, 300-312. Naguib, M., Flood, P., McArdle, J.J., and Brenner, H.R. (2002). Advances in neurobiology of the neuromuscular junction: implications for the anesthesiologist. Anesthesiology 96, 202-231. Ngo, S.T., Cole, R.N., Sunn, N., Phillips, W.D., and Noakes, P.G. (2012). Neuregulin-1 potentiates agrin-induced acetylcholine receptor clustering through muscle-specific kinase phosphorylation. J Cell Sci 125, 1531-1543. Omar, A., Marwaha, K., and Bollu, P.C. (2017). Physiology, neuromuscular junction. Ono, S. (2018). Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 506, 315-322. Paterson, E.K., and Courtneidge, S.A. (2018). Invadosomes are coming: new insights into function and disease relevance. Febs j 285, 8-27. Pavlath, G.K., and Horsley, V. (2003). Cell Fusion in Skeletal Muscle: Central Role of NFATC2 in Regulating Muscle Cell Size. Cell Cycle 2, 419-422. Pęziński, M., Maliszewska-Olejniczak, K., Daszczuk, P., Mazurek, P., Niewiadomski, P., and Rędowicz, M.J. (2021). Tks5 Regulates Synaptic Podosome Formation and Stabilization of the Postsynaptic Machinery at the Neuromuscular Junction. Int J Mol Sci 22. Proszynski, T.J., Gingras, J., Valdez, G., Krzewski, K., and Sanes, J.R. (2009). Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci U S A 106, 18373-18378. Proszynski, T.J., and Sanes, J.R. (2013). Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J Cell Sci 126, 2225-2235. Ramarao, M.K., Bianchetta, M.J., Lanken, J., and Cohen, J.B. (2001). Role of rapsyn tetratricopeptide repeat and coiled-coil domains in self-association and nicotinic acetylcholine receptor clustering. J Biol Chem 276, 7475-7483. Richardson, B.E., Beckett, K., Nowak, S.J., and Baylies, M.K. (2007). SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development 134, 4357-4367. Rodríguez Cruz, P.M., Cossins, J., Beeson, D., and Vincent, A. (2020). The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 13, 610964. Rogg, M., Yasuda-Yamahara, M., Abed, A., Dinse, P., Helmstädter, M., Conzelmann, A., Frimmel, J., Sellung, D., Biniossek, M., and Kretz, O. (2017). The WD40-domain containing protein CORO2B is specifically enriched in glomerular podocytes and regulates the ventral actin cytoskeleton. Scientific reports 7, 1-15. Sens, K.L., Zhang, S., Jin, P., Duan, R., Zhang, G., Luo, F., Parachini, L., and Chen, E.H. (2010). An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J Cell Biol 191, 1013-1027. Shi, L., Fu, A.K., and Ip, N.Y. (2012). Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 35, 441-453. Shi, Y., Li, Z., Xu, Q., Wang, T., Li, T., Shen, J., Zhang, F., Chen, J., Zhou, G., Ji, W., et al. (2011). Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 43, 1224-1227. Tsai, L.-K., Chen, I.-H., Chao, C.-C., Hsueh, H.-W., Chen, H.-H., Huang, Y.-H., Weng, R.-W., Lai, T.-Y., Tsai, Y.-C., Tsao, Y.-P., et al. (2021). Autoantibody of NRIP, a novel AChR-interacting protein, plays a detrimental role in myasthenia gravis. Journal of Cachexia, Sarcopenia and Muscle 12, 665-676. Tsai, T.C., Lee, Y.L., Hsiao, W.C., Tsao, Y.P., and Chen, S.L. (2005). NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J Biol Chem 280, 20000-20009. Unwin, N. (2013). Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q Rev Biophys 46, 283-322. Van Den Dries, K., Meddens, M., De Keijzer, S., Shekhar, S., Subramaniam, V., Figdor, C.G., and Cambi, A. (2013). Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nature communications 4, 1-13. van der Velden, J.L., Schols, A.M., Willems, J., Kelders, M.C., and Langen, R.C. (2008). Glycogen synthase kinase 3β suppresses myogenic differentiation through negative regulation of NFATc3. Journal of Biological Chemistry 283, 358-366. Voegtli, W.C., Madrona, A.Y., and Wilson, D.K. (2003). The structure of Aip1p, a WD repeat protein that regulates Cofilin-mediated actin depolymerization. Journal of Biological Chemistry 278, 34373-34379. Wang, J., and Conboy, I. (2010). Embryonic vs. adult myogenesis: challenging the ‘regeneration recapitulates development’paradigm. Journal of molecular cell biology 2, 1-4. Wang, J., Jing, Z., Zhang, L., Zhou, G., Braun, J., Yao, Y., and Wang, Z.Z. (2003). Regulation of acetylcholine receptor clustering by the tumor suppressor APC. Nat Neurosci 6, 1017-1018. Watanabe, T., Wang, S., Noritake, J., Sato, K., Fukata, M., Takefuji, M., Nakagawa, M., Izumi, N., Akiyama, T., and Kaibuchi, K. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell 7, 871-883. Wu, H., Xiong, W.C., and Mei, L. (2010). To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137, 1017-1033. Xu, C., and Min, J. (2011). Structure and function of WD40 domain proteins. Protein Cell 2, 202-214. Yang, K.C., Chuang, K.W., Yen, W.S., Lin, S.Y., Chen, H.H., Chang, S.W., Lin, Y.S., Wu, W.L., Tsao, Y.P., Chen, W.P., et al. (2019). Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. J Mol Cell Cardiol 137, 9-24. Zhang, B., Luo, S., Wang, Q., Suzuki, T., Xiong, W.C., and Mei, L. (2008). LRP4 serves as a coreceptor of agrin. Neuron 60, 285-297. Zhang, C., and Zhang, F. (2015). The Multifunctions of WD40 Proteins in Genome Integrity and Cell Cycle Progression. J Genomics 3, 40-50. Zhang, P., Fan, Y., Ru, H., Wang, L., Magupalli, V.G., Taylor, S.S., Alessi, D.R., and Wu, H. (2019). Crystal structure of the WD40 domain dimer of LRRK2. Proceedings of the National Academy of Sciences 116, 1579-1584. Zhang, Y., Ye, J., Chen, D., Zhao, X., Xiao, X., Tai, S., Yang, W., and Zhu, D. (2006). Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient. J Transl Med 4, 53. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85208 | - |
dc.description.abstract | 核受體相互作用蛋白 (NRIP) 是一種攜鈣素結合蛋白,包含了一個 IQ motif和七個WD40 domains。在先前研究中,我們發現 NRIP是乙醯膽鹼受體複合物的結構性蛋白,並且與乙醯膽鹼受體蛋白有交互作用。乙醯膽鹼受體複合物表現在神經肌肉接合處(NMJ)上,透過參與乙醯膽鹼受體的聚集影響神經肌肉接合處的形成。此外,我們也觀察到肌肉NRIP基因剔除小鼠身上存在NMJ面積減少的異常表現。鑑於上述發現,我們認為NRIP作為乙醯膽鹼受體複合物的結構性蛋白,可以促進乙醯膽鹼受體的聚集,進而維持神經肌肉接合處的完整性。本篇研究中,我們想要進一步了解NRIP如何影響乙醯膽鹼受體聚集的形成。 首先,我們藉由蛋白質體外結合實驗和免疫沈澱法,以研究 NRIP structural domains與AChR的交互作用。實驗結果顯示含有WD6/7 domain的NRIP片段可以與AChR-α結合,而去除掉WD6/7 domain後,NRIP失去了與AChR-α的結合能力。因此,我們認為WD6/7 domain負責了NRIP與AChR的交互作用。接下來為了研究NRIP和AChR的結合與AChR聚集的形成是否相關,我們共轉染了不同EGFP-NRIP片段和mCherry-AChR-α到HEK293T 細胞中,觀察細胞內產生AChR聚集的數量。同時我們也將不同EGFP-NRIP片段轉染到 KO19細胞(NRIP剔除的C2C12細胞)中分析內生性AChR形成聚集的能力。實驗結果顯示,具有與 AChR 結合能力的 NRIP片段可以促進細胞內AChR的聚集,而去除掉WD6/7 domain後,細胞內形成聚集的數量顯著下降。總的來說,我們認為NRIP可以透過WD6/7domain與AChR進行交互作用,進而促進AChR聚集的產生。NRIP除了作為乙醯膽鹼受體結合蛋白外,還是一種肌動蛋白結合蛋白。在先前研究中,我們發現 NRIP與肌細胞融合相關,可以透過和肌動蛋白的結合來調控肌細胞融合的過程。為了進一步證實我們的想法,我們對肌肉NRIP基因剔除小鼠進行不同的NRIP 基因治療,並評估治療後小鼠的肌纖維大小。我們發現 NRIP、NRIP-C和NRIP-WD6/7可以有效增加肌纖維大小;WD6/7 domain,尤其是WD7 domain,在其中扮演了重要角色。上述結果證實NRIP通過WD6/7 domain參與了肌肉再生的過程。此外,我們發現NRIP還會與肌動蛋白、Tks5共同表現在C2C12 細胞中。肌動蛋白和Tks5是突觸足體的組成部分,而突觸足體是一種富含肌動蛋白的結構,負責AChR聚集的型態成熟。基於NRIP與肌動蛋白結合的作用,我們認為NRIP 可以通過與足體的肌動蛋白絲結合來影響突觸足體的形成。本篇研究中,我們將不同EGFP-NRIP片段轉染到 KO19細胞中,發現具有與肌動蛋白結合能力的 NRIP片段可以促進細胞內突觸足體的產生,而去除掉WD6/7 domain和IQ motif後細胞形成突觸足體的能力下降,其下降程度又以WD6/7 domain的去除較為嚴重。最後,我們將EGFP-NRIP和 FLAG-NRIP 共轉染到293T細胞中,透過免疫沈澱法觀察到NRIP在細胞內會產生交互作用,表明NRIP可能會以二聚體的形式表現在細胞中。總而言之,通過上述實驗,我們證實NRIP 是一種多功能蛋白質,可能以二聚體的結構表現在細胞中。NRIP作為乙醯膽鹼受體複合物的結構性蛋白,透過WD6/7 domain與乙醯膽鹼受體結合,可以促進乙醯膽鹼受體聚集的產生,進一步穩定神經肌肉接合處的形成。此外,NRIP 還可以作為肌動蛋白結合蛋白參與突觸足體的形成,並調控肌細胞融合的過程,從而產生更大的肌纖維。 | zh_TW |
dc.description.abstract | Nuclear receptor interaction protein (NRIP), a calmodulin-binding protein that includes one IQ motif and seven WD40 domains, is an acetylcholine receptor (AChR) binding protein and acts as a scaffold protein to stabilize AChR-rapsyn-α-actinin (ACTN2) complex, which is associated with AChR clustering in NMJ formation. Additionally, muscle-restricted NRIP knockout (cKO) mice present decreased NMJ area, indicating that NRIP may be essential in the maintenance of NMJ integrity. Thus, we hypothesize that NRIP is essential for AChR clustering to impact NMJ formation. In this study, we would like to figure out which domain of NRIP is responsible for AChR binding and to determine whether the AChR binding is correlated with AChR cluster formation. First, we performed in vitro pull-down assays and co-immunoprecipitation assays to investigate the AChR binding ability of NRIP structural domains. We observed that NRIP mutants containing the WD6/7 domain could interact with AChR, while the deletion of the WD6/7 domain caused AChR binding ability defects. Taken together, WD40 6/7 was responsible for AChR binding. Next, we co-transfected mCherry-AChR-α and EGFP-NRIP mutants into HEK293T cells and then transfected EGFP-NRIP mutants into KO19 (NRIP-null C2C12) cells to evaluate the AChR clustering ability. We observed that NRIP mutants with AChR binding ability can form AChR clusters, while the loss of the WD6/7 domain caused AChR clustering defects. Collectively, the WD6/7 domain may be responsible for AChR clustering through binding with AChR. In addition, NRIP is also an actin-binding protein. We found that the binding of NRIP to actin is associated with myoblast fusion. To further confirm that, we evaluated the rescue effect of intramuscular NRIP gene therapy on the myofiber size of NRIP cKO mice, and found that NRIP had a significantly rescued effect on myofiber CSA. The WD6/7 domain, especially domain7, was important for the rescued effect. Moreover, NRIP co-localized with F-actin and Tks5, which are structural components of synaptic podosomes. The synaptic podosome is an F-actin-enriched structure, which is responsible for AChR cluster morphological maturation. Hence, we hypothesized that NRIP could affect the synaptic podosome formation by binding to actin filaments of podosomes. Here, we evaluated the percentages of clusters containing synaptic podosomes in KO19 (NRIP-null C2C12) cells transfected with NRIP mutants and found that the loss of actin-binding domains, WD6/7 and IQ motif, resulted in a significant loss of synaptic podosome formation. Last, we performed an immunoprecipitation assay by co-transfecting EGFP-NRIP and FLAG-NRIP to HEK293T cells and verified an association between NRIP molecules, indicating that NRIP would form an oligomer, such as a dimer in cells. In summary, we demonstrate that NRIP is a multi-functional protein. It may form dimers and acts as a scaffold protein of the AChR complex, participates in AChR clustering through its binding with AChR by WD6/7 domains, and further stabilizes the NMJ formation. Besides, NRIP also acts as an actin-binding protein to form synaptic podosomes and facilitate myoblast fusion which results in larger myofibers. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:50:20Z (GMT). No. of bitstreams: 1 U0001-0308202214034900.pdf: 11429742 bytes, checksum: feaa797bea6d7c3fa9d81d3541f4d367 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 中文摘要 III Abstract V Chapter 1 INTRODUCTION 1 1.1 The characteristics of Nuclear receptor interaction protein (NRIP) 1 1.2 The characteristics of the neuromuscular junction (NMJ) 3 1.3 The characteristics of acetylcholine receptor (AChR) and cluster formation 4 1.4 The role of NRIP at neuromuscular junction 6 1.5 The role of NRIP for skeletal muscle function 7 1.6 The mechanism of myoblast fusion during myogenesis 10 1.7 The characteristics and functions of the WD40 domain 12 1.8 The characteristics and functions of synaptic podosomes 13 1.9 Aims of study 15 Chapter 2 METHODS AND MATERIALS 18 2.1 Plasmid construction 18 2.2 Protein production 18 2.3 Cell culture 19 2.4 Cell transfection 20 2.5 In vitro pull-down assay 20 2.6 Protein extraction and western blot analysis 21 2.7 Immunoprecipitation assay 22 2.8 Immunofluorescence staining of cells 22 2.9 Immunofluorescence staining of tissues for CSA analysis 23 2.10 Statistical analysis 24 Chapter 3 RESULTS 25 3.1 Mapping NRIP domains for interaction with AChR-α in vitro 25 3.2 Mapping NRIP domains with interaction with AChR-α in cultured cells 27 3.3 Mapping of NRIP structural domains for AChR cluster formation in 293T cells 28 3.4 Mapping of NRIP structural domains for endogenous AChR cluster formation in KO19 cells 30 3.5 The rescue effect of intramuscular NRIP gene therapy on the myofiber size (cross-sectional area) of NRIP cKO mice 33 3.6 NRIP affected the formation of synaptic podosomes 36 3.7 NRIP can form dimers as a multi-functional protein 38 Chapter 4 DISCUSSION 40 Chapter 5 FIGURES 50 Chapter 6 SUPPLEMENTARY 68 Chapter 7 APPENDIX 70 Chapter 8 REFERENCES 72 | |
dc.language.iso | en | |
dc.title | 探討NRIP 如何影響乙醯膽鹼受體聚集形成與肌纖維大小 | zh_TW |
dc.title | To study how NRIP affects acetylcholine receptor (AChR) cluster formation and myofiber size | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃祥博(Hsiang-Po Huang),曾秀如(Shiou-Ru Tzeng) | |
dc.subject.keyword | 核受體交互作用蛋白,乙醯膽鹼受體,肌動蛋白,肌管形成,足體,WD40 domain, | zh_TW |
dc.subject.keyword | NRIP,AChR,actin,myotube formation,podosome,WD40 domain, | en |
dc.relation.page | 79 | |
dc.identifier.doi | 10.6342/NTU202202007 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-03 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
dc.date.embargo-lift | 2027-08-03 | - |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0308202214034900.pdf 目前未授權公開取用 | 11.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。