請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85207
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張豐丞(Feng-Cheng Chang) | |
dc.contributor.author | Chia-Yun Chang | en |
dc.contributor.author | 張嘉芸 | zh_TW |
dc.date.accessioned | 2023-03-19T22:50:16Z | - |
dc.date.copyright | 2022-10-20 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-27 | |
dc.identifier.citation | 連佑中、謝嘉民(2012)低溫微晶矽薄膜電晶體於可撓式電子元件之應用。國家奈米元件實驗室奈米通訊19(1):29-34。 Abral, H., J. Ariksa, M. Mahardika, D. Handayani, I. Aminah, N. Sandrawati, A. B. Pratama, N. Fajri, S. M. Sapuan, and R. A. Ilyas. (2020a). Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocolloids, 98, 105266. Abral, H., N. Fajri, M. Mahardika, D. Handayani, E. Sugiarti, and H.-J. Kim. (2020b). A simple strategy in enhancing moisture and thermal resistance and tensile properties of disintegrated bacterial cellulose nanopaper. Journal of Materials Research and Technology, 9(4), 8754-8765. Aulin, C., M. Gällstedt, and T. Lindström. (2010). Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 17(3), 559-574. Bandi, R., M. Alle, C.-W. Park, S.-Y. Han, G.-J. Kwon, N.-H. Kim, J.-C. Kim, and S.-H. Lee. (2021). Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 330,129330. Barbash, V. A., O. V. Yaschenko, S. V. Alushkin, A. S. Kondratyuk, O. Y. Posudievsky, and V. G. Koshechko. (2016). The effect of mechanochemical treatment of the cellulose on characteristics of nanocellulose films. Nanoscale Res Lett, 11(1), 410. Barkane, A., E. Kampe, O. Platnieks, and S. Gaidukovs. (2021). Cellulose nanocrystals vs. cellulose nanofibers: a comparative study of reinforcing effects in uv-cured vegetable oil nanocomposites. Nanomaterials, 11(7), 1791. Chen, F., W. Xiang, D. Sawada, L. Bai, M. Hummel, H. Sixta, and T. Budtova. (2020). Exploring large ductility in cellulose nanopaper combining high toughness and strength. ACS Nano, 14(9), 11150-11159. Cintrón, M., andD. Hinchliffe. (2015). FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers, 3(4), 30-40. Costa, S. V., P. Pingel, S. Janietz, and A. F. Nogueira. (2016). Inverted organic solar cells using nanocellulose as substrate. Journal of Applied Polymer Science, 133(28), 43679. Cunha, A. G., Q. Zhou, P. T. Larsson, and L. A. Berglund. (2014). Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption. Cellulose, 21(4), 2773-2787. Deng, S., R. Huang, M. Zhou, F. Chen, and Q. Fu. (2016). Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Carbohydrate Polymers, 154, 129-138. Fang, Z., H. Zhu, Y. Yuan, D. Ha, S. Zhu, C. Preston, Q. Chen, Y. Li, X. Han, S. Lee, G. Chen, T. Li, J. Munday, J. Huang, and L. Hu. (2014). Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Letters, 14(2), 765-773. Farooq, M., T. Zou, G. Riviere, M. H. Sipponen, and M. Osterberg. (2019). Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules, 20(2), 693-704. Fortunato, E., N. Correia, P. Barquinha, L. Pereira, G. Goncalves, and R. Martins. (2008). High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Letters, 29(9), 988-990. Fujisawa, S., Y. Okita, H. Fukuzumi, T. Saito, and A. Isogai. (2011). Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers, 84(1), 579-583. Guo, X., andY. Wu. (2018). IN SITU visualization of water adsorption in cellulose nanofiber film with micrometer spatial resolution using micro-FTIR imaging. Journal of Wood Chemistry and Technology, 38(5), 361-370. Gupta, P. K. , Raghunath, S. S. , Prasanna, D. V. , Venkat, P., Shree, V., Chithananthan, C., Choudhary, S., Surender, K., & Geetha, K. (2019). An Update on Overview of Cellulose, Its Structure and Applications. In A. R. Pascual, & M. E. E. Martín (Eds.), Cellulose. Retrieved from https://www.intechopen.com/chapters/67083 Hanninen, A., E. Sarlin, I. Lyyra, T. Salpavaara, M. Kellomaki, and S. Tuukkanen. (2018). Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydrate Polymers, 202, 418-424. Haske-Cornelius, O., S. Weinberger, F. Quartinello, C. Tallian, F. Brunner, A. Pellis, and G. M. Guebitz. (2019). Environmentally friendly covalent coupling of proteins onto oxidized cellulosic materials. New Journal of Chemistry, 43(36), 14536-14545. Henriksson, M., L. A. Berglund, P. Isaksson, T. Lindstrom, and T. Nishino. (2008). Cellulose nanopaper structures of high toughness. Biomacromolecules, 9(6), 1579-1585. Hu, C., Y. Zhou, T. Zhang, T. Jiang, C. Meng, and G. Zeng. (2021). Morphological, thermal, mechanical, and optical properties of hybrid nanocellulose film containing cellulose nanofiber and cellulose nanocrystals. Fibers and Polymers, 22(8), 2187-2193. Hu, L., G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J. T. Bloking, M. D. McGehee, L. Wågberg, and Y. Cui. (2013). Transparent and conductive paper from nanocellulose fibers. Energy & Environmental Science., 6(2), 513-518. Huang, J., H. L. Zhu, Y. C. Chen, C. Preston, K. Rohrbach, J. Cumings, and L. B. Hu. (2013). Highly transparent and flexible nanopaper transistors . ACS Nano, 7(3), 2106-2113. Isogai, A. (2013). Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449-459. Jiang, Y., Z. Wang, X. Liu, Q. Yang, Q. Huang, L. Wang, Y. Dai, C. Qin, and S. Wang. (2020). Highly transparent, uv-shielding, and water-resistant lignocellulose nanopaper from agro-industrial waste for green optoelectronics. ACS Sustainable Chemistry & Engineering, 8(47), 17508-17519. Kavkler, K., N. Gunde-Cimerman, P. Zalar, and A. Demsar. (2011). FTIR spectroscopy of biodegraded historical textiles. Polymer Degradation and Stability, 96(4), 574-580. Kim, H.-J., S. Roy, and J.-W. Rhim. (2021). Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. Journal of Environmental Chemical Engineering, 9(5), 106043. Kontturi, K. S., K. Biegaj, A. Mautner, R. T. Woodward, B. P. Wilson, L. S. Johansson, K. Y. Lee, J. Y. Y. Heng, A. Bismarck, and E. Kontturi. (2017). Noncovalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir, 33(23), 5707-5712. Krathumkhet, N., M. Ujihara, and T. Imae. (2021). Self-standing films of octadecylaminated-TEMPO-oxidized cellulose nanofibrils with antifingerprint properties. Carbohydrate Polymer, 256, 117536. Lafia-Araga, R. A., R. Sabo, O. Nabinejad, L. Matuana, and N. Stark. (2021). Influence of lactic acid surface modification of cellulose nanofibrils on the properties of cellulose nanofibril films and cellulose nanofibril-poly(lactic acid) composites. Biomolecules, 11(9), 1346. Leijonmarck, S., A. Cornell, G. Lindbergh, and L. Wågberg. (2013). Flexible nano-paper-based positive electrodes for Li-ion batteries—Preparation process and properties. Nano Energy, 2(5), 794-800. Li, W., Wang, S., Wang, W., Qin, C., & Wu, M. (2019). Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging applications. Cellulose, 26(5), 3271-3284. Li, C., T. Kasuga, K. Uetani, H. Koga, and M. Nogi. (2020a). High-speed fabrication of clear transparent cellulose nanopaper by applying humidity-controlled multi-stage drying method. Nanomaterials (Basel), 10(11), 2194. Li, X., X. Zhang, S. Yao, H. Chang, Y. Wang, and Z. Zhang. (2020b). UV-blocking, transparent and hazy cellulose nanopaper with superior strength based on varied components of poplar mechanical pulp. Cellulose, 27(11), 6563-6576. Lin, C., Q. Wang, Q. Deng, H. Huang, F. Huang, L. Huang, Y. Ni, L. Chen, S. Cao, and X. Ma. (2019). Preparation of highly hazy transparent cellulose film from dissolving pulp. Cellulose, 26(6), 4061-4069. Lin, P.-C., C.-T. Hsieh, X. Liu, F.-C. Chang, W.-C. Chen, J. Yu, and C.-C. Chueh. (2021). Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate. Chemical Engineering Journal, 405, 126996. Liu, W., K. Liu, H. Du, T. Zheng, N. Zhang, T. Xu, B. Pang, X. Zhang, C. Si, and K. Zhang. (2022). Cellulose nanopaper: fabrication, functionalization, and applications. Nanomicro Letters, 14(1), 104. Marchhessault, R. H. and P. R. Sundararajan(1983)Cellulose. In G. O. Aspinall,The polysaccharides, Vol. 2(pp. 12-95) Martins, R., A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, and E. Fortunato. (2011). Complementary metal oxide semiconductor technology with and on paper. Advanced Materials, 23(39), 4491-4496. Martins, R. F. P., A. Ahnood, N. Correia, L. M. N. P. Pereira, R. Barros, P. M. C. B. Barquinha, R. Costa, I. M. M. Ferreira, A. Nathan, and E. E. M. C. Fortunato. (2013). Recyclable, flexible, low-power oxide electronics. Advanced Functional Materials, 23(17), 2153-2161. Masruchin, N., B.-D. Park, and J. M. Lee. (2018). Surface modification of TEMPO-oxidized cellulose nanofibrils for composites to give color change in response to pH level. Cellulose, 25(12), 7079-7090. Mautner, A., K.-Y. Lee, T. Tammelin, A. P. Mathew, A. J. Nedoma, K. Li, and A. Bismarck. (2015). Cellulose nanopapers as tight aqueous ultra-filtration membranes. Reactive and Functional Polymers, 86, 209-214. Mulyadi, A., andY. L. Deng. (2016). Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application. Cellulose, 23(1), 519-528. Nagarajan, K. J., N. R. Ramanujam, M. R. Sanjay, S. Siengchin, B. Surya Rajan, K. Sathick Basha, P. Madhu, and G. R. Raghav. (2021). A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization. Polymer Composites, 42(4), 1588-1630. Najafabadi, E., Y. H. Zhou, K. A. Knauer, C. Fuentes-Hernandez, and B. Kippelen. (2014). Efficient organic light-emitting diodes fabricated on cellulose nanocrystal substrates. Applied Physics Letters, 105(6), 063305. Ning, H., Y. Zeng, Y. Kuang, Z. Zheng, P. Zhou, R. Yao, H. Zhang, W. Bao, G. Chen, Z. Fang, and J. Peng. (2017). Room-temperature fabrication of high-performance amorphous in-ga-zn-o/al2o3 thin-film transistors on ultrasmooth and clear nanopaper. ACS Applied Materials & Interfaces, 9(33), 27792-27800. Nogi, M., M. Karakawa, N. Komoda, H. Yagyu, and T. T. Nge. (2015). Transparent conductive nanofiber paper for foldable solar cells. Scientific Reports, 5, 17254. Okahisa, Y., A. Yoshida, S. Miyaguchi, and H. Yano. (2009). Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology, 69(11-12), 1958-1961. Pang, Z., Z. Yang, Y. Chen, J. Zhang, Q. Wang, F. Huang, and Q. Wei. (2016). A room temperature ammonia gas sensor based on cellulose/TiO 2 /PANI composite nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494, 248-255. Pinto, R. J. B., M. A. Martins, J. M. F. Lucas, C. Vilela, A. J. M. Sales, L. C. Costa, P. Marques, and C. S. R. Freire. (2020). Highly electroconductive nanopapers based on nanocellulose and copper nanowires: a new generation of flexible and sustainable electrical materials. ACS Applied Materials & Interfaces, 12(30), 34208-34216. Qing, Y., R. Sabo, Y. Wu, J. Y. Zhu, and Z. Cai. (2015). Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose, 22(2), 1091-1102. Quellmalz, A., andA. Mihranyan. (2015). Citric acid cross-linked nanocellulose-based paper for size-exclusion nanofiltration. ACS Biomaterials Science & Engineering, 1(4), 271-276. Rajala, S., T. Siponkoski, E. Sarlin, M. Mettanen, M. Vuoriluoto, A. Pammo, J. Juuti, O. J. Rojas, S. Franssila, and S. Tuukkanen. (2016). Cellulose nanofibril film as a piezoelectric sensor material. ACS Applied Materials & Interfaces, 8(24), 15607-15614. Robles, E., L. Csóka, and J. Labidi. (2018). Effect of reaction conditions on the surface modification of cellulose nanofibrils with aminopropyl triethoxysilane. Coatings, 8(4), 139. Sabo, R., A. Yermakov, C. T. Law, and R. Elhajjar. (2016). Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: a review. Journal of Renewable Materials, 4(5), 297-312. Sehaqui, H., A. D. Liu, Q. Zhou, and L. A. Berglund. (2010). Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules, 11(9), 2195-2198. Sehaqui, H., Q. Zhou, O. Ikkala, and L. A. Berglund. (2011). Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules, 12(10), 3638-3644. Sehaqui, H., T. Zimmermann, and P. Tingaut. (2013). Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose, 21(1), 367-382 Sethi, J., M. Farooq, S. Sain, M. Sain, J. A. Sirviö, M. Illikainen, and K. Oksman. (2017). Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers. Cellulose, 25(1), 259-268. Shi, J., D. Xing, and J. Lia. (2012). Ftir studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Energy Procedia, 16, 758-762. Shinoda, R., T. Saito, Y. Okita, and A. Isogai. (2012). Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 13(3), 842-849. Sun, L., X. Zhang, H. Liu, K. Liu, H. Du, A. Kumar, G. Sharma, and C. Si. (2021). Recent advances in hydrophobic modification of nanocellulose. Current Organic Chemistry, 25(3), 417-436. Sun, X., Q. Wu, S. Ren, and T. Lei. (2015). Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose, 22(2), 1123-1133. Tamiya, T., R. Soni, Y.-I. Hsu, and H. Uyama. (2021). Highly water-tolerant TEMPO-oxidized cellulose nanofiber films using a maleic anhydride/wax copolymer. ACS Applied Polymer Materials, 3(9), 4625-4633. Tanguy, N. R., K. Khorsand Kazemi, J. Hong, K. C. Cheung, S. Mohammadi, P. Gnanasekar, S. S. Nair, M. H. Zarifi, and N. Yan. (2022). Flexible, robust, and high-performance gas sensors based on lignocellulosic nanofibrils. Carbohydrate Polymers, 278, 118920. Thomas, B., M. C. Raj, A. K. B, R. M. H, J. Joy, A. Moores, G. L. Drisko, and C. Sanchez. (2018). Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews, 118(24), 11575-11625. Trache, D., M. H. Hussin, M. K. M. Haafiz, and V. K. Thakur. (2017). Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 9(5), 1763-1786. Trache, D., A. F. Tarchoun, M. Derradji, T. S. Hamidon, N. Masruchin, N. Brosse, and M. H. Hussin. (2020). Nanocellulose: from fundamentals to advanced applications. Frontiers in Chemistry, 8, 392. Tran, A., W. Y. Hamad, and M. J. MacLachlan. (2018). Fabrication of cellulose nanocrystal films through differential evaporation for patterned coatings. ACS Applied Nano Materials, 1(7), 3098-3104. Ummartyotin, S., J. Juntaro, M. Sain, and H. Manuspiya. (2012). Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Industrial Crops and Products, 35(1), 92-97. Wang, J., W. Chen, T. Dong, H. Wang, S. Si, and X. Li. (2021). Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chemistry, 23(24), 10062-10070. Wang, Q., H. Du, F. Zhang, Y. Zhang, M. Wu, G. Yu, C. Liu, B. Li, and H. Peng. (2018). Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. Journal of Materials Chemistry A, 6(27), 13021-13030. Wu, M., P. Sukyai, D. Lv, F. Zhang, P. Wang, C. Liu, and B. Li. (2020). Water and humidity-induced shape memory cellulose nanopaper with quick response, excellent wet strength and folding resistance. Chemical Engineering Journal, 392, 123673. Xia, J., Z. Zhang, W. Liu, V. C. F. Li, Y. Cao, W. Zhang, and Y. Deng. (2018). Highly transparent 100% cellulose nanofibril films with extremely high oxygen barriers in high relative humidity. Cellulose, 25(7), 4057-4066. Xiong, R., Y. Han, Y. Wang, W. Zhang, X. Zhang, and C. Lu. (2014). Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface. Carbohydrate Polymers, 113, 264-271. Xu, X., J. Zhou, L. Jiang, G. Lubineau, T. Ng, B. S. Ooi, H. Y. Liao, C. Shen, L. Chen, and J. Y. Zhu. (2016). Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale, 8(24), 12294-12306. Xue, B., Y. Yang, R. Tang, Y. Sun, S. Sun, X. Cao, P. Li, Z. Zhang, and X. Li. (2019). One-step hydrothermal synthesis of a flexible nanopaper-based Fe3+ sensor using carbon quantum dot grafted cellulose nanofibrils. Cellulose, 27(2), 729-742. Xue, Y., Z. Mou, and H. Xiao. (2017). Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 9(39), 14758-14781. Yagyu, H., S. Ifuku, and M. Nogi. (2017). Acetylation of optically transparent cellulose nanopaper for high thermal and moisture resistance in a flexible device substrate. Flexible and Printed Electronics, 2(1), 014003. Yang, W., L. Jiao, W. Liu, Y. Deng, and H. Dai. (2018). Morphology control for tunable optical properties of cellulose nanofibrils films. Cellulose, 25(10), 5909-5918. Yu, Z., Z. Xu, K. Qiao, L. Zhang, Z. Chen, X. Yang, A. Ji, M. Wu, and Y. Gao. (2018). Water-resistant and haze-tunable transparent cellulose nanopaper for patterned electroluminescence devices. Macromolecular Materials and Engineering, 303(6), 1800142. Zhu, H., Z. Xiao, D. Liu, Y. Li, N. J. Weadock, Z. Fang, J. Huang, and L. Hu. (2013). Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy & Environmental Science, 6(7), 2105-2111. Zhu, H., Z. Fang, C. Preston, Y. Li, and L. Hu. (2014). Transparent paper: fabrications, properties, and device applications. Energy & Environmental. Science., 7(1), 269-287. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85207 | - |
dc.description.abstract | 隨著環保意識上升,減少使用石化產品並以生物可降解材料取代之已成為近年全球趨勢。其中,因來源可再生、低成本、生物相容性佳、輕量、熱穩定性佳等優勢,纖維素成為取代石化產品的熱門材料。纖維素紙張相較於塑膠與玻璃更有可撓性佳、環境友善、可印性佳與卷對卷製程相容性佳等優點,可應用於電子元件的基板。使用纖維素奈米材料製成的纖維素奈米紙除了有紙張的優點,更有表面粗糙度低與透明度高等優勢,惟纖維素上的羥基引起的親水性仍會阻礙纖維素奈米紙的應用。是故,本研究透過檸檬酸改質纖維素奈米紙,以改善其抗濕性,同時使用不同纖維素奈米材料製成的纖維素奈米紙,探討環境友善的製程下纖維素奈米材料比例的不同造成的性質差異。研究結果顯示,含有CNF的纖維素奈米紙因纖維的團聚,造成纖維素奈米紙的表面粗糙度高與透明度低,但對於機械性質有正向的作用。含有TOCN雖可提升纖維素奈米紙的透射率高,但熱穩定性差。含有CNC的纖維素奈米紙除了有透射率高的優點,更展現材料的鐵電性。而藉由檸檬酸的改質,顯著改善了纖維素奈米紙的吸濕性,同時提升熱穩定性,酯化改質效果良好。綜上所述,藉由調整纖維素奈米材料的複合比例,可得到理想的性質,加上檸檬酸的改質,在無毒性且生物可降解的製程下,製造出可因應各方應用的纖維素奈米紙。 | zh_TW |
dc.description.abstract | With the rising awareness of environmental friendliness, reducing and replacing the use of petrochemicals has become a global trend in recent years. Among all the candidates for materials to replace petrochemicals, cellulose has gained much attention due to its advantages such as renewability, low cost, good biocompatibility, lightweight, and thermal stability. Because of its flexibility, environmental friendliness, printability, and compatibility with the roll-to-roll process, cellulose paper is more competitive with plastic and glass as a substrate for electronic components. Moreover, with the addition of cellulose nanomaterials, cellulose nanopaper becomes smoother and more transparent. Still, there are obstacles to the application of cellulose nanopaper because of its hydrophilicity. In this study, we modified cellulose with citric acid to improve its moisture resistance. Meanwhile, different cellulose nanomaterials were combined to gain preferable properties. The results showed that the cellulose nanopaper containing CNF had higher roughness and lower transparency due to the agglomeration of fibers, yet had a positive effect on the mechanical properties. Although TOCN can improve the transmittance of cellulose nanopaper, it had poor thermal stability. Not only did the presence of CNC improve the transparency of the nanopaper, it also exhibited ferroelectricity. On the other hand, by the modification of citric acid, the water resistance and thermal stability of the cellulose nanopaper were significantly improved. To sum up, by adjusting the composite ratio of cellulose nanomaterials, ideal properties can be obtained, and with esterification, a non-toxic and environmentally friendly process can be used to fabricate cellulose nanopaper. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:50:16Z (GMT). No. of bitstreams: 1 U0001-2609202220314800.pdf: 5816577 bytes, checksum: d0530d379484643d6f02224f89b74bf9 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 謝辭 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章. 前言 1 第二章. 文獻回顧 4 2.1 纖維素奈米材料 4 2.2 纖維素奈米微晶 4 2.3 纖維素奈米纖維 5 2.4 2,2,6,6-四甲基哌啶-1-氧化的纖維素奈米纖維 6 2.5 纖維素奈米紙製備方式 7 2.6 纖維素奈米紙的改質 8 2.7 纖維素奈米紙之應用 11 2.7.1. 濾材 11 2.7.2. 纖維素奈米紙電子元件 12 第三章. 材料與方法 15 3.1 試驗材料 16 3.2 試驗方法 17 3.2.1. 製膜 17 3.2.2. 改質與水洗 18 3.2.3. 纖維素奈米紙性質分析 19 第四章. 結果與討論 24 4.1 傅立葉轉換紅外線光譜 24 4.2 微結構分析 32 4.3 吸濕性 41 4.4 水接觸角 44 4.5 光學性質 46 4.6 機械性質 58 4.7 熱重分析 67 4.8 電滯曲線 70 第五章. 結論 72 參考文獻 73 附錄 80 附錄一、纖維素奈米紙機械性質 80 附錄二、纖維素奈米紙熱重曲線 81 | |
dc.language.iso | zh-TW | |
dc.title | 纖維素奈米材料複合奈米紙之性質探討 | zh_TW |
dc.title | Study on Characteristics of Nanopaers Formed by Hybrid Cellulose Nanomaterials | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何振隆(Chen-Lung Ho),童世煌(Shih-Huang Tung),張資正(Tzu-Cheng Chang) | |
dc.subject.keyword | 纖維素奈米材料,纖維素奈米紙,複合纖維素奈米紙,溶劑鑄造法,酯化反應, | zh_TW |
dc.subject.keyword | cellulose nanomaterials,hybrid nanopaper,cellulose nanopaper,casting method,esterification, | en |
dc.relation.page | 82 | |
dc.identifier.doi | 10.6342/NTU202204117 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-20 | - |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2609202220314800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。