Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85205
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor江伯倫(Bor-Luen Chiang)
dc.contributor.authorYi-Ping Huangen
dc.contributor.author黃羿苹zh_TW
dc.date.accessioned2023-03-19T22:50:09Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-08-03
dc.identifier.citation1. DeNardo, D.G. and B. Ruffell, Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol, 2019. 19(6): p. 369-382. 2. Ginhoux, F. and M. Guilliams, Tissue-resident macrophage ontogeny and homeostasis. Immunity, 2016. 44(3): p. 439-449. 3. Gomez Perdiguero, E., et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015. 518(7540): p. 547-51. 4. Stremmel, C., et al., Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun, 2018. 9(1): p. 75. 5. Hashimoto, D., et al., Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity, 2013. 38(4): p. 792-804. 6. Perdiguero, E.G. and F. Geissmann, The development and maintenance of resident macrophages. Nat Immunol, 2016. 17(1): p. 2-8. 7. Sheng, J., C. Ruedl, and K. Karjalainen, Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity, 2015. 43(2): p. 382-93. 8. Das, A., et al., Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol, 2015. 185(10): p. 2596-606. 9. Wynn, T.A., A. Chawla, and J.W. Pollard, Macrophage biology in development, homeostasis and disease. Nature, 2013. 496(7446): p. 445-55. 10. Dwyer, A.R., E.L. Greenland, and F.J. Pixley, Promotion of tumor invasion by tumor-associated macrophages: the role of CSF-1-activated phosphatidylinositol 3 kinase and src family kinase motility signaling. Cancers (Basel), 2017. 9(6). 11. Pyonteck, S.M., et al., CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med, 2013. 19(10): p. 1264-72. 12. Ding, A.H., C.F. Nathan, and D.J. Stuehr, Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol, 1988. 141(7): p. 2407-12. 13. Martinez, F.O., et al., Macrophage activation and polarization. Front Biosci, 2008. 13: p. 453-61. 14. Rath, M., et al., Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol, 2014. 5: p. 532. 15. Leopold Wager, C.M. and F.L. Wormley, Jr., Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol, 2014. 7(5): p. 1023-35. 16. Holt, M.P., L. Cheng, and C. Ju, Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol, 2008. 84(6): p. 1410-21. 17. Laskin, D.L., Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem Res Toxicol, 2009. 22(8): p. 1376-85. 18. Orecchioni, M., et al., Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol, 2019. 10: p. 1084. 19. Pekarova, M., et al., New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in raw 264.7 macrophages. ScientificWorldJournal, 2011. 11: p. 2443-57. 20. Lu, G., et al., Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun, 2015. 6: p. 6676. 21. Franciszkiewicz, K., et al., Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res, 2012. 72(24): p. 6325-32. 22. Tokunaga, R., et al., CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev, 2018. 63: p. 40-47. 23. Vazirinejad, R., et al., The biological functions, structure and sources of CXCL10 and its outstanding part in the pathophysiology of multiple sclerosis. Neuroimmunomodulation, 2014. 21(6): p. 322-30. 24. Yokochi, T., R.D. Holly, and E.A. Clark, B lymphoblast antigen (BB-1) expressed on Epstein-Barr virus-activated B cell blasts, B lymphoblastoid cell lines, and Burkitt's lymphomas. J Immunol, 1982. 128(2): p. 823-7. 25. Lim, W., et al., Regulation of B7.1 costimulatory molecule is mediated by the IFN regulatory factor-7 through the activation of JNK in lipopolysaccharide-stimulated human monocytic cells. J Immunol, 2005. 175(9): p. 5690-700. 26. Kaneko, N., et al., The role of interleukin-1 in general pathology. Inflamm Regen, 2019. 39: p. 12. 27. Arango Duque, G. and A. Descoteaux, Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol, 2014. 5: p. 491. 28. Mauer, J., et al., Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol, 2014. 15(5): p. 423-30. 29. Wu, X., et al., TNF-α sensitizes chemotherapy and radiotherapy against breast cancer cells. Cancer Cell Int, 2017. 17: p. 13. 30. Jung, J., H. Zeng, and T. Horng, Metabolism as a guiding force for immunity. Nat Cell Biol, 2019. 21(1): p. 85-93. 31. O'Neill, L.A. and E.J. Pearce, Immunometabolism governs dendritic cell and macrophage function. J Exp Med, 2016. 213(1): p. 15-23. 32. Geeraerts, X., et al., Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front Immunol, 2017. 8: p. 289. 33. Lee, K.Y., M1 and M2 polarization of macrophages: a mini-review. Med Biol Sci Eng, 2019: p. 1-5. 34. Zotta, A., Z. Zaslona, and L.A.J.J.o.C.S. O’Neill, Is citrate a critical signal in immunity and inflammation? J Cell Signal, 2020. 1(3). 35. Mantovani, A., et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol, 2004. 25(12): p. 677-86. 36. Wang, L.X., et al., M2b macrophage polarization and its roles in diseases. J Leukoc Biol, 2019. 106(2): p. 345-358. 37. Edwards, J.P., et al., Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol, 2006. 80(6): p. 1298-307. 38. Murray, P.J. and T.A. Wynn, Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol, 2011. 11(11): p. 723-37. 39. Raggi, F., et al., Regulation of human macrophage M1-M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front Immunol, 2017. 8: p. 1097. 40. Stout, R.D., et al., Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol, 2005. 175(1): p. 342-9. 41. Zizzo, G., et al., Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol, 2012. 189(7): p. 3508-20. 42. Dzik, J.M., Evolutionary roots of arginase expression and regulation. Front Immunol, 2014. 5: p. 544. 43. Munder, M., et al., Suppression of T-cell functions by human granulocyte arginase. Blood, 2006. 108(5): p. 1627-34. 44. Munder, M., Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol, 2009. 158(3): p. 638-51. 45. Morris, S.M., Jr., Arginine metabolism: boundaries of our knowledge. J Nutr, 2007. 137(6 Suppl 2): p. 1602s-1609s. 46. Campbell, L., et al., Local arginase 1 activity is required for cutaneous wound healing. J Invest Dermatol, 2013. 133(10): p. 2461-2470. 47. Cai, Y., et al., Ym1/2 promotes Th2 cytokine expression by inhibiting 12/15(S)-lipoxygenase: identification of a novel pathway for regulating allergic inflammation. J Immunol, 2009. 182(9): p. 5393-9. 48. Sutherland, T.E., et al., Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nat Immunol, 2014. 15(12): p. 1116-25. 49. Lee, M.R., et al., Retnla overexpression attenuates allergic inflammation of the airway. PLoS One, 2014. 9(11): p. e112666. 50. Pesce, J.T., et al., Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog, 2009. 5(4): p. e1000393. 51. Carter, J.H. and W.G. Tourtellotte, Early growth response transcriptional regulators are dispensable for macrophage differentiation. J Immunol, 2007. 178(5): p. 3038-47. 52. Jablonski, K.A., et al., Novel markers to delineate murine M1 and M2 macrophages. PLoS One, 2015. 10(12): p. e0145342. 53. Suzuki, Y., et al., Macrophage mannose receptor, CD206, predict prognosis in patients with pulmonary tuberculosis. Sci Rep, 2018. 8(1): p. 13129. 54. Haase, J., et al., Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia, 2014. 57(3): p. 562-71. 55. Zeyda, M., et al., Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond), 2007. 31(9): p. 1420-8. 56. Bellón, T., et al., Alternative activation of macrophages in human peritoneum: implications for peritoneal fibrosis. Nephrol Dial Transplant, 2011. 26(9): p. 2995-3005. 57. Liu, Y., et al., Metabolic reprogramming in macrophage responses. Biomark Res, 2021. 9(1): p. 1. 58. Sakaguchi, S., et al., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995. 155(3): p. 1151-64. 59. Sakaguchi, S., et al., Regulatory T cells and immune tolerance. Cell, 2008. 133(5): p. 775-87. 60. Chen, W., et al., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med, 2003. 198(12): p. 1875-86. 61. Curotto de Lafaille, M.A. and J.J. Lafaille, Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity, 2009. 30(5): p. 626-35. 62. Oida, T., et al., CD4+CD25- T cells that express latency-associated peptide on the surface suppress CD4+CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. J Immunol, 2003. 170(5): p. 2516-22. 63. Sakaguchi, S., et al., Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev, 2001. 182: p. 18-32. 64. Collison, L.W., et al., The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature, 2007. 450(7169): p. 566-9. 65. Chaudhry, A., et al., Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity, 2011. 34(4): p. 566-78. 66. Joetham, A., et al., Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta. J Immunol, 2007. 178(3): p. 1433-42. 67. Hutloff, A., et al., ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature, 1999. 397(6716): p. 263-6. 68. Onishi, Y., et al., Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A, 2008. 105(29): p. 10113-8. 69. Choi, B.D., et al., Human regulatory T cells kill tumor cells through granzyme-dependent cytotoxicity upon retargeting with a bispecific antibody. Cancer Immunol Res, 2013. 1(3): p. 163. 70. Borsellino, G., et al., Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood, 2007. 110(4): p. 1225-32. 71. Deaglio, S., et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med, 2007. 204(6): p. 1257-65. 72. Chu, K.H. and B.L. Chiang, Regulatory T cells induced by mucosal B cells alleviate allergic airway hypersensitivity. Am J Respir Cell Mol Biol, 2012. 46(5): p. 651-9. 73. Hsu, L.H., et al., A B-1a cell subset induces Foxp3(-) T cells with regulatory activity through an IL-10-independent pathway. Cell Mol Immunol, 2015. 12(3): p. 354-65. 74. Shao, T.Y., et al., Novel foxp3(-) IL-10(-) regulatory T-cells induced by B-Cells alleviate intestinal inflammation in vivo. Sci Rep, 2016. 6: p. 32415. 75. Chien, C.H., et al., Characterization of c-maf(+)foxp3(-) regulatory T cells induced by repeated stimulation of antigen-presenting B cells. Sci Rep, 2017. 7: p. 46348. 76. Huang, J.H. and B.L. Chiang, Regulatory T cells induced by B cells suppress NLRP3 inflammasome activation and alleviate monosodium urate-induced gouty inflammation. iScience, 2021. 24(2): p. 102103. 77. Chen, S.Y., et al., Lymphocyte-activation gene 3(+) (LAG3(+)) forkhead box protein 3(-) (FOXP3(-)) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis. J Autoimmun, 2016. 68: p. 75-85. 78. Kolar, P., et al., CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice. Arthritis Rheum, 2009. 60(1): p. 123-32. 79. Kim, G.R., et al., In vivo induction of regulatory T cells via CTLA-4 signaling peptide to control autoimmune encephalomyelitis and prevent disease relapse. Adv Sci (Weinh), 2021. 8(14): p. 2004973. 80. Workman, C.J. and D.A. Vignali, Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol, 2005. 174(2): p. 688-95. 81. Anderson, A.C., N. Joller, and V.K. Kuchroo, Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity, 2016. 44(5): p. 989-1004. 82. Huang, C.T., et al., Role of LAG-3 in regulatory T cells. Immunity, 2004. 21(4): p. 503-13. 83. Okamura, T., et al., CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci U S A, 2009. 106(33): p. 13974-9. 84. Hannier, S., et al., CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol, 1998. 161(8): p. 4058-65. 85. Liu, Q., et al., BATF potentially mediates negative regulation of PD-1/PD-Ls pathway on T cell functions in mycobacterium tuberculosis infection. Front Immunol, 2019. 10: p. 2430. 86. Messenheimer, D.J., et al., Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res, 2017. 23(20): p. 6165-6177. 87. Said, E.A., et al., Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med, 2010. 16(4): p. 452-9. 88. Coquerelle, C., et al., Anti-CTLA-4 treatment induces IL-10-producing ICOS+ regulatory T cells displaying IDO-dependent anti-inflammatory properties in a mouse model of colitis. Gut, 2009. 58(10): p. 1363-73. 89. Vocanson, M., et al., Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol, 2010. 126(2): p. 280-9, 289.e1-7. 90. Mahmud, S.A., et al., Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol, 2014. 15(5): p. 473-81. 91. Boniakowski, A.E., et al., Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol, 2017. 199(1): p. 17-24. 92. Venet, F., et al., Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J Immunol, 2006. 177(9): p. 6540-7. 93. Tiemessen, M.M., et al., CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A, 2007. 104(49): p. 19446-51. 94. Ladwig, A., et al., Osteopontin augments M2 microglia response and separates M1- and M2-polarized microglial activation in permanent focal cerebral ischemia. Mediators Inflamm, 2017. 2017: p. 7189421. 95. Shi, L., et al., Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity, 2021. 54(7): p. 1527-1542.e8. 96. Lentsch, A.B., et al., In vivo suppression of NF-kappa B and preservation of I kappa B alpha by interleukin-10 and interleukin-13. J Clin Invest, 1997. 100(10): p. 2443-8. 97. Lin, J., et al., The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation. J Lipid Res, 2010. 51(5): p. 1208-17. 98. Abu-Amer, Y., IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J Clin Invest, 2001. 107(11): p. 1375-85. 99. Kanarek, N., et al., Ubiquitination and degradation of the inhibitors of NF-kappaB. Cold Spring Harb Perspect Biol, 2010. 2(2): p. a000166. 100. Feinberg, M.W., et al., Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem, 2005. 280(46): p. 38247-58. 101. Dahdah, A., et al., Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J Clin Invest, 2014. 124(10): p. 4577-89. 102. Liao, X., et al., Krüppel-like factor 4 regulates macrophage polarization. J Clin Invest, 2011. 121(7): p. 2736-49.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85205-
dc.description.abstract調節性T細胞 (Regulatory T cell, Tregs) 為適應性免疫中有效的抑制因子,許多證據指出調節性T細胞可經由調控巨噬細胞的表型達到有效的抑制效果。本實驗室中發現了新的一群B細胞誘發調節型T細胞 (Treg-of-B, or Treg/B) 同樣具有抑制各種炎症免疫疾病的潛能,並且由於其特徵與已知的調節性T細胞亞群不同,屬於新型的調節型T細胞。本篇研究主要探討B細胞誘發調節型T細胞對於調控骨髓源性巨噬細胞 (BMDMs) 極化並且是否造成功能上的改變。 首先,我們先建立Treg/B與BMDMs的培養條件,確定純度有達到實驗要求並且確定BMDMs在體外刺激的方式能夠分化成典型與替代活化型巨噬細胞(M1/M2)。實驗中將BMDMs與Treg/B共培養,發現BMDMs極化成發炎型M1受到干擾,M1所表現的基因下降以外,BMDMs所釋放的一氧化氮與促發炎型介白素表現皆下降。再來,我們藉由多孔性膜與共培養條件培養基發現Treg/B抑制M1極化是藉由細胞之間接觸後所釋放的可溶性因子。此外,與巨噬細胞共培養的Treg/B高度表達M2相關細胞因子,如IL-4、IL-13和IL-10。過去研究指出這些細胞因子可以抑制NF-κB轉錄因子,本篇研究結果證明Treg/B細胞主要藉由IL-4降低了M1所釋放的一氧化氮,以及M1細胞激素分泌的抑制部分經由IL-10。過去文獻指出KLF4會與NF-κB複合物結合調控M1巨噬細胞iNOS的表達量,結果中也發現Treg/B降低了KLF4表現以及以及抑制M1巨噬細胞NF-κB的活化。綜合以上,Treg/B抑制發炎型巨噬細胞。因此,未來在治療上的應用可以更深入探討Treg/B對於自體免疫疾病與巨噬細胞活化症候群的相關研究。zh_TW
dc.description.abstractRegulatory T (Treg) cells are the effective immunomodulatory cells in the adaptive immune response. Currently, more and more researches have pointed out that Treg cells can polarize macrophages to the M2 phenotype. In our laboratory, we have identified a new subset of B-cell-induced regulatory T (Treg-of-B, or Treg/B) cells with immunosuppressive functions. However, their characteristics are significantly different from the known regulatory T cell subsets. Therefore, this study aims to investigate whether Treg/B cells could regulate the polarization of bone marrow-derived macrophages (BMDMs) and the functional changes. To investigate the change in macrophage phenotypes, we cultured them with or without Treg/B cells. We discovered that macrophages polarized into classically activated (also called M1) macrophages were decreased. In addition to the decrease of M1-related gene expression, the concentration of nitric oxide (NO) and pro-inflammatory interleukins also decreased. Moreover, the effect of Treg/B cells on decreasing the M1 polarization was dose dependent. Next, we used transwell system and co-culture conditioned medium to investigate whether the M1 suppression relied on cell-cell contact or soluble factors. Here we indicated that Treg/B cells decreased M1 polarization mostly depended on soluble factors. Interestingly, Treg/B cells co-cultured with BMDMs highly expressed M2-related cytokines. It has been reported that these cytokines can suppress NF-κB activation. In our results, IL-4, IL-13, and IL-10 were not the main factors to inhibit M1 polarization, but Treg/B cells reduced nitric oxide released by M1 macrophages mainly by IL-4. Taken together, these data suggested that there are other soluble factors secreted by Treg/B cells to decrease M1 polarization. Previous studies illustrated that kruppel-like factor 4 (KLF4) can induce the iNOS expression through cooperation with the NF-κB complex. Our study also found that Treg/B inhibited the KLF4 expression and reduced the activation of NF-κB. In conclusion, Treg/B cells inhibited activated macrophage polarization. In the future, Treg/B cells should be further explored the therapeutic applications in macrophage activation syndrome and autoimmune diseases.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:50:09Z (GMT). No. of bitstreams: 1
U0001-0308202209485900.pdf: 3903511 bytes, checksum: c9b2d46a3d3d28cecc8c678102a6fc8d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 ...... I 致謝 ...... II 中文摘要 ...... IV Abstract ...... V Content ...... VII Contents of Figures ...... XI Chapter 1. Introduction ...... 1 Part 1. Background ...... 2 1. Overview of macrophages ...... 2 1-1. Origin of macrophages ...... 2 1-2. Macrophages differentiation and polarization ...... 2 1-3. M1 macrophages ...... 3 1-3-1. M1 function ...... 3 1-3-2. The general marker of M1 ...... 4 1-3-3. M1 metabolism ...... 6 1-4. M2 macrophages ...... 7 1-4-1. M2 function ...... 7 1-4-2. The general markers of M2 ...... 7 1-4-3. M2 metabolism ...... 10 2. Overview of Treg/B cell ...... 11 2-1. Origin of regulatory T cell ...... 11 2-2. Regulatory T cell function ...... 11 2-3. The new subtype of regulatory T cells—Foxp3- CD4+ Treg/B cell ...... 12 2-4. Overview the surface marker of Treg/B cells ...... 13 2-5. Treg cells regulate the M1/M2 balance ...... 16 Part 2. Statement of the Motives ...... 17 Patr3. Experimental Aims ...... 17 Chapter 2. Materials and Methods ...... 18 Part 1. Materials ...... 19 1. Animals ...... 19 2. Culture medium and buffer ...... 19 3. Mitogens, cytokine, and monoclonal antibodies ...... 20 4. Flow cytometry ...... 20 5. RNA extraction ...... 22 6. Reverse transcription-polymerase chain reaction (RT-PCR) ...... 22 7. Quantitative real time polymerase chain reaction (qPCR) ...... 22 8. Enzyme-linked immunosorbent assay (ELISA) ...... 23 7. Proliferation assay ...... 24 Part 2. Methods ...... 25 1. ...... Cell culture ...... 25 1-1. Preparation of bone marrow cell ...... 25 1-2. Bone marrow derived macrophage differentiation and polarization ...... 25 1-3. Preparation of splenocytes ...... 26 1-4. B220+ nave B cell and CD4+CD25- T cell isolation ...... 26 1-5. In vitro generation of Treg/B cells ...... 27 1-6. Treg/B cells and bone marrow-derived macrophage cocultured ...... 27 2. Flow cytometry analysis ...... 28 3. Enzyme-linked immunosorbent assay (ELISA) ...... 28 4. mRNA extraction ...... 29 5. Reverse transcription polymerase chain reaction (RT-PCR) for mRNA ...... 29 6. Real-time polymerase chain reaction (quantitative PCR, qPCR) for mRNA ...... 30 7. [3H]-incorporation assay ...... 30 8. NO production ...... 31 9. Western blot analysis ...... 31 10. Statistical analysis ...... 32 Chapter 3. Results ...... 33 1. The characteristics of Treg/B cells ...... 34 2. The method to culture bone marrow derived macrophages (BMDMs) ...... 35 3. The optimization of stimulation conditions for BMDM polarization ...... 35 4. Treg/B cells regulated the M1/M2 polarization in resting BMDMs ...... 36 5. Treg/B cells decreased the M1 polarization and suppressed nitrite production in activated BMDMs ...... 37 6. Treg/B cells suppressed pro-inflammatory cytokines and increased anti-inflammatory cytokines production in BMDMs ...... 39 7. Treg/B cells decreased the M1 polarization via cell-cell contact-secreting soluble factors ...... 40 8. Treg/B-mediated decline on M1 NO production is through IL-4, and M1 cytokine production was mainly through IL-10 ...... 41 9. Treg/B cells decreased KLF4 gene expression and increased IκB protein accumulation ...... 43 Chapter 4. Discussion ...... 44 Figures ...... 52 References ...... 75
dc.language.isoen
dc.subject替代活化型巨噬細胞zh_TW
dc.subject一氧化氮zh_TW
dc.subjectB細胞誘發調節型T細胞zh_TW
dc.subject免疫調節zh_TW
dc.subject典型活化型巨噬細胞zh_TW
dc.subject促發炎型介白素zh_TW
dc.subjectclassically activated M1 macrophagesen
dc.subjectnitric oxideen
dc.subjectpro-inflammatory interleukinsen
dc.subjectimmunomodulationen
dc.subjectbone marrow-derived macrophageen
dc.subjectregulatory T cellen
dc.titleB細胞誘發調節型T細胞對骨髓源性巨噬細胞炎症反應之調控機制zh_TW
dc.titleStudy on the mechanisms of B-cell-induced regulatory T cells on inflammatory responses of bone marrow-derived macrophagesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor朱清良(Ching-Liang Chu)
dc.contributor.oralexamcommittee鄧述諄(Shu-Chun Teng)
dc.subject.keywordB細胞誘發調節型T細胞,典型活化型巨噬細胞,替代活化型巨噬細胞,促發炎型介白素,一氧化氮,免疫調節,zh_TW
dc.subject.keywordregulatory T cell,bone marrow-derived macrophage,classically activated M1 macrophages,pro-inflammatory interleukins,nitric oxide,immunomodulation,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202201999
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
dc.date.embargo-lift2022-10-03-
Appears in Collections:免疫學研究所

Files in This Item:
File SizeFormat 
U0001-0308202209485900.pdf
Access limited in NTU ip range
3.81 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved