請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85191完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑媛(Sui-Yuan Chang) | |
| dc.contributor.author | Si Man Ieong | en |
| dc.contributor.author | 楊詩蔓 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:49:16Z | - |
| dc.date.copyright | 2022-10-03 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-05 | |
| dc.identifier.citation | 1. World Health Organization (WHO). WHO Coronavirus (COVID-19) Dashboard. Available at: https://covid19.who.int/. . 2. Abdool Karim, S.S. and T. de Oliveira, New SARS-CoV-2 Variants - Clinical, Public Health, and Vaccine Implications. N Engl J Med, 2021. 384(19): p. 1866-1868. 3. Campbell, F., et al., Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill, 2021. 26(24). 4. Volz, E., et al., Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, 2021. 184(1): p. 64-75 e11. 5. Zhou, B., et al., SARS-CoV-2 spike D614G change enhances replication and transmission. Nature, 2021. 592(7852): p. 122-127. 6. Greaney, A.J., et al., Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe, 2021. 29(1): p. 44-57 e9. 7. Volz, E., et al., Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature, 2021. 593(7858): p. 266-269. 8. Liu, Y., et al., The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature, 2022. 602(7896): p. 294-299. 9. Zhou, D., et al., Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 2021. 184(9): p. 2348-2361 e6. 10. Baum, A., et al., Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science, 2020. 369(6506): p. 1014-1018. 11. Faria, N.R., et al., Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 2021. 372(6544): p. 815-821. 12. Greaney, A.J., et al., Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe, 2021. 29(3): p. 463-476 e6. 13. Tareq, A.M., et al., Impact of SARS-CoV-2 delta variant (B.1.617.2) in surging second wave of COVID-19 and efficacy of vaccines in tackling the ongoing pandemic. Hum Vaccin Immunother, 2021. 17(11): p. 4126-4127. 14. Wang, Y., et al., Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China. EClinicalMedicine, 2021. 40: p. 101129. 15. Mallapaty, S., COVID-19: How Omicron overtook Delta in three charts. Nature, 2022. 16. Mohapatra, R.K., et al., Omicron (B.1.1.529) variant of SARS-CoV-2: Concerns, challenges, and recent updates. J Med Virol, 2022. 94(6): p. 2336-2342. 17. Lippi, G., C. Mattiuzzi, and B.M. Henry, Neutralizing potency of COVID-19 vaccines against the SARS-CoV-2 Omicron (B.1.1.529) variant. J Med Virol, 2022. 94(5): p. 1799-1802. 18. Syed, A.M., et al., Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. medRxiv, 2022. 19. Quandt, J., et al., Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Sci Immunol, 2022: p. eabq2427. 20. Euopean Centre for Disease Prevention and Control, Epidemiological update: SARS-CoV-2 Omicron sub-lineages BA.4 and BA.5 (2022) (available at https://www.ecdc.europa.eu/en/news-events/epidemiological-update-sars-cov-2-omicron-sub-lineages-ba4-and-ba5). 21. Polack, F.P., et al., Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med, 2020. 383(27): p. 2603-2615. 22. Baden, L.R., et al., Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, 2021. 384(5): p. 403-416. 23. Voysey, M., et al., Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021. 397(10269): p. 99-111. 24. Simpson, C.R., et al., First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland. Nat Med, 2021. 27(7): p. 1290-1297. 25. Schulz, J.B., et al., COVID-19 Vaccine-Associated Cerebral Venous Thrombosis in Germany. Ann Neurol, 2021. 90(4): p. 627-639. 26. Schmidt, T., et al., Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat Med, 2021. 27(9): p. 1530-1535. 27. Barros-Martins, J., et al., Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nat Med, 2021. 27(9): p. 1525-1529. 28. Pilishvili, T., et al., Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel. N Engl J Med, 2021. 385(25): p. e90. 29. Brown, C.M., et al., Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings - Barnstable County, Massachusetts, July 2021. MMWR Morb Mortal Wkly Rep, 2021. 70(31): p. 1059-1062. 30. Fowlkes, A., et al., Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Frontline Workers Before and During B.1.617.2 (Delta) Variant Predominance - Eight U.S. Locations, December 2020-August 2021. MMWR Morb Mortal Wkly Rep, 2021. 70(34): p. 1167-1169. 31. Tartof, S.Y., et al., Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet, 2021. 398(10309): p. 1407-1416. 32. Feikin, D.R., et al., Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet, 2022. 399(10328): p. 924-944. 33. Collie, S., et al., Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N Engl J Med, 2022. 386(5): p. 494-496. 34. Rosenberg, E.S., et al., Covid-19 Vaccine Effectiveness in New York State. N Engl J Med, 2022. 386(2): p. 116-127. 35. Atmar, R.L., et al., Heterologous SARS-CoV-2 Booster Vaccinations - Preliminary Report. medRxiv, 2021. 36. Ferdinands, J.M., et al., Waning 2-Dose and 3-Dose Effectiveness of mRNA Vaccines Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance - VISION Network, 10 States, August 2021-January 2022. MMWR Morb Mortal Wkly Rep, 2022. 71(7): p. 255-263. 37. Atmar, R.L., et al., Homologous and Heterologous Covid-19 Booster Vaccinations. N Engl J Med, 2022. 386(11): p. 1046-1057. 38. Costa Clemens, S.A., et al., Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet, 2022. 399(10324): p. 521-529. 39. Khoury, D.S., et al., Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med, 2021. 27(7): p. 1205-1211. 40. Cromer, D., et al., Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe, 2022. 3(1): p. e52-e61. 41. Kaku, C.I., et al., Broad anti-SARS-CoV-2 antibody immunity induced by heterologous ChAdOx1/mRNA-1273 vaccination. Science, 2022. 375(6584): p. 1041-1047. 42. Heinz, F.X. and K. Stiasny, Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines, 2021. 6(1): p. 104. 43. Payne, R.P., et al., Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell, 2021. 184(23): p. 5699-5714 e11. 44. Voysey, M., et al., Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet, 2021. 397(10277): p. 881-891. 45. Sheng, W.H., et al., Immune response and safety of heterologous ChAdOx1-nCoV-19/mRNA-1273 vaccination compared with homologous ChAdOx1-nCoV-19 or homologous mRNA-1273 vaccination. J Formos Med Assoc, 2022. 121(4): p. 766-777. 46. Schmidt, T., et al., Cellular immunity predominates over humoral immunity after homologous and heterologous mRNA and vector-based COVID-19 vaccine regimens in solid organ transplant recipients. Am J Transplant, 2021. 21(12): p. 3990-4002. 47. Ramasamy, M.N., et al., Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet, 2021. 396(10267): p. 1979-1993. 48. Gruell, H., et al., mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Med, 2022. 28(3): p. 477-480. 49. Bruminhent, J., et al., Immunogenicity of ChAdOx1 nCoV-19 vaccine after a two-dose inactivated SARS-CoV-2 vaccination of dialysis patients and kidney transplant recipients. Sci Rep, 2022. 12(1): p. 3587. 50. Munro, A.P.S., et al., Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet, 2021. 398(10318): p. 2258-2276. 51. Barda, N., et al., Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet, 2021. 398(10316): p. 2093-2100. 52. Deng, Y., et al., SARS-CoV-2-specific T cell immunity to structural proteins in inactivated COVID-19 vaccine recipients. Cell Mol Immunol, 2021. 18(8): p. 2040-2041. 53. Hall, V.G., et al., Randomized Trial of a Third Dose of mRNA-1273 Vaccine in Transplant Recipients. N Engl J Med, 2021. 385(13): p. 1244-1246. 54. Garcia-Beltran, W.F., et al., mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell, 2022. 185(3): p. 457-466 e4. 55. Corbett, K.S., et al., Protection against SARS-CoV-2 Beta variant in mRNA-1273 vaccine-boosted nonhuman primates. Science, 2021. 374(6573): p. 1343-1353. 56. Falsey, A.R., et al., SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3. N Engl J Med, 2021. 385(17): p. 1627-1629. 57. Wang, K., et al., A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. medRxiv, 2021: p. https://doi.org/10.1101/2021.09.02.21261735. 58. Zeng, G., et al., Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials. Lancet Infect Dis, 2022. 22(4): p. 483-495. 59. Tan, C.W., et al., A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol, 2020. 38(9): p. 1073-1078. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85191 | - |
| dc.description.abstract | COVID-19在全球造成大流行,其病原體SARS-CoV-2不斷地變異,陸續出現傳染力更高,對抗體中和能力具抗性的變異株,進而影響疫苗的保護力。目前,最新的Omicron變異株在世界各地迅速傳播,造成很多突破性感染。此外,某些疫苗注射的安全性隱憂,使得各國開始提出不同疫苗混合接種 (異源接種) 的策略,目前已有研究表明混合接種載體/mRNA疫苗能產生更強的免疫反應,但混合接種第三劑mRNA疫苗加強劑是否能增強對變異株的中和能力仍需更多研究來證明。本篇論文的研究首先分析了疫苗異源接種所誘導的體液免疫反應,結果發現anti- Spike RBD IgG抗體都有顯著的上升;對比施打兩劑AZ組來說,其它組別的抗體效價都增加了13倍以上,而混打的組別與施打兩劑Moderna組的結果相當。針對SARS-CoV-2 Alpha和Delta變異株,異源接種相較於單純接種AZ可誘導更高的中和抗體效價,證實AZ混打Moderna疫苗確實可誘導出較好的體液免疫反應,而延長疫苗接種間隔時間不會影響抗體效價。我們接下來探討對於前兩劑施打AZ疫苗的個體,如果第三劑接種mRNA疫苗加強劑,能否誘導出更強及更廣效的抗體。依第三劑疫苗種類分為三組,分別為Moderna全劑、半劑或BNT加強劑疫苗。結果發現全劑的Moderna疫苗產生最高的抗體效價。第三劑混打比第二劑混打對於病毒變異株產生更強的中和抗體反應,但針對Omicron和Delta株的中和抗體效價,相較於Alpha株有明顯地降低。三種SARS-CoV-2抗體檢測方法中,ELISA、NT和PRNT針對原始病毒株都具有良好的相關性,但在RBD上有突變的變異株則會降低結合抗體和中和抗體之間的相關性,影響ELISA評估抗體保護力的能力。總體來說,本篇論文的研究證實了疫苗異源接種的安全性和可行性,接種第三劑mRNA疫苗能夠顯著提高對於不同變異株的中和抗體效價。 | zh_TW |
| dc.description.abstract | Since the beginning of the COVID-19 pandemic, evolving mutations in the SARS-CoV-2 spike protein have led to the generation of divergent variants of concern (VoCs) of SARS-CoV-2, which have been reported to increase transmissibility, and reduce the capability of neutralizing antibodies obtained through natural infection, therapeutic monoclonal antibodies, or vaccination. Currently, Omicron variant (B.1.1.529) becomes the most prevalent variant, and dominates infection events around the world. Heterologous prime-boost vaccination is currently recommended in several countries, as the vector vaccine was halted due to an increased risk of thrombotic events. Several studies have shown that heterologous vaccination could induce robust immune responses. Nonetheless, whether heterologous vaccination with a third dose of mRNA vaccine booster can enhance the neutralization antibody responses against VOCs were not available. In this prospective study, we first analyzed the immunogenicity of heterologous vaccine, and found that heterologous vector/mRNA prime–booster regimens induced higher titers of neutralizing antibodies against SARS-CoV-2 Alpha and Delta variants than the homologous vector vaccine group, and comparable to the homologous mRNA vaccine group. Then we examined whether the mRNA booster could increase the immunogenicity in individuals which had previously received two doses of ChAdOx1 vaccines. The participants were randomized into three groups for the third dose booster vaccination, including full-dosed mRNA-1273 vaccine, half-dosed mRNA-1273 vaccine and full-dosed BNT-162b2 vaccine. Our results show that the three-dose regimens induced stronger neutralizing antibody responses against SARS-CoV-2 VOCs than the two-dose regimens. Nevertheless, the neutralizing antibody titers against the Delta and Omicron variants were significantly lower than those against the Alpha variant. The three SARS-CoV-2 antibody detection methods, ELISA, NT and PRNT, all have good correlation with each other when the Alpha strain was used. When the variant strains with mutations on the RBD were used, the correlation between binding antibodies and neutralizing antibodies reduced, which might influence the application of ELISA as a tool in interpreting neutralizing antibody titers. Overall, the study results demonstrated that heterologous vaccination is safe and could induce a strong humoral response in healthy individuals. Boosting a third dose of mRNA vaccine can significantly increase the neutralizing antibody titer against VOCs. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:49:16Z (GMT). No. of bitstreams: 1 U0001-0508202211193700.pdf: 4061605 bytes, checksum: 2f71fdf1a3ade383dcd45dc1e9994bc9 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgements I Chinese Abstract II English Abstract IV List of figures VIII List of Tables X 1 Introduction 1 1.1 Epidemiology of COVID-19 1 1.2 SARS-CoV-2 Variants 2 1.3 COVID-19 Vaccines development 5 1.4 Heterologous boosting 7 1.5 Waning immunity of vaccines 8 1.6 Third booster dose vaccine 9 2 Materials and Methods 11 2.1 Materials 11 2.1.1 Cell 11 2.1.2 Virus 11 2.1.3 Medium and reagent 11 2.1.4 Commercial Kit 12 2.2 Methods 13 2.2.1 Serum collection 13 2.2.2 Cell culture 16 2.2.3 Virus propagation and titration 17 2.2.4 Serologic assay 17 2.2.5 Tissue culture infectious dose (TCID50) assay 18 2.2.6 Microneutralization test 18 2.2.7 Plaque assay 19 2.2.8 Plaque reduction neutralization test 20 2.2.9 Statistical analysis 20 3 Aim of study 22 4 Results 23 4.1 Comparison of different platforms in evaluating the humoral immune responses against SARS-CoV-2 Alpha and Delta variants 23 4.2 Two-dose schedule: heterologous ChAdOx1/mRNA-1273 vaccination compared with homologous ChAdOx1 or homologous mRNA-1273 vaccination 24 4.2.1 Anti-spike immunoglobulin G binding antibodies 24 4.2.2 Live virus neutralizing antibody tests 26 4.3 Three-dose schedule: third dose of mRNA COVID-19 vaccines in healthy adults previously vaccinated with two doses of the ChAdOx1 vaccine 28 4.3.1 Anti-spike immunoglobulin G binding antibodies 28 4.3.2 Live virus neutralizing antibody test 30 4.4 Correlation between SARS-CoV-2 anti-spike RBD IgG and live virus neutralizing antibodies in different variants. 32 5 Discussion 34 6 Figures and Tables 42 7 References 58 8 Appendix 68 | |
| dc.language.iso | en | |
| dc.subject | 疫苗接種 | zh_TW |
| dc.subject | 變異株 | zh_TW |
| dc.subject | SARS-CoV-2 | zh_TW |
| dc.subject | 體液免疫反應 | zh_TW |
| dc.subject | 中和抗體 | zh_TW |
| dc.subject | Virus variant | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | Heterologous vaccination | en |
| dc.subject | Humoral immune responses | en |
| dc.subject | Neutralizing antibody | en |
| dc.title | 疫苗異源接種對SARS-CoV-2變異株體液免疫反應之研究 | zh_TW |
| dc.title | Humoral immune responses against SARS-CoV-2 variants after heterologous vaccination | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高全良(Chuan-Liang Kao),盛望徽(Wang-Huei Sheng),李君男(Chun-Nan Lee),林靜宜(Jing-Yi Lin) | |
| dc.subject.keyword | SARS-CoV-2,疫苗接種,體液免疫反應,中和抗體,變異株, | zh_TW |
| dc.subject.keyword | SARS-CoV-2,Heterologous vaccination,Humoral immune responses,Neutralizing antibody,Virus variant, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202202081 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-05 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-03 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202211193700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
