Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85184
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭斐元(Fei-Yuan Hsiao)
dc.contributor.authorHsi-Yu Laien
dc.contributor.author賴璽宇zh_TW
dc.date.accessioned2023-03-19T22:48:49Z-
dc.date.copyright2022-10-20
dc.date.issued2022
dc.date.submitted2022-08-05
dc.identifier.citation1.Sander, M., et al., The challenges of human population ageing. Age Ageing, 2015. 44(2): p. 185-7. 2.Xue, Q.L., The frailty syndrome: definition and natural history. Clin Geriatr Med, 2011. 27(1): p. 1-15. 3.Rockwood, K. and A. Mitnitski, Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci, 2007. 62(7): p. 722-7. 4.Ziaeian, B. and G.C. Fonarow, Epidemiology and aetiology of heart failure. Nat Rev Cardiol, 2016. 13(6): p. 368-78. 5.Searle, S.D., et al., A standard procedure for creating a frailty index. BMC Geriatrics, 2008. 8(1): p. 24. 6.Clegg, A., et al., Development and validation of an electronic frailty index using routine primary care electronic health record data. Age Ageing, 2016. 45(3): p. 353-60. 7.Wen, Y.C., L.K. Chen, and F.Y. Hsiao, Predicting mortality and hospitalization of older adults by the multimorbidity frailty index. PLoS One, 2017. 12(11): p. e0187825. 8.Fu, S., N. Huang, and Y.J. Chou, Trends in the prevalence of multiple chronic conditions in Taiwan from 2000 to 2010: a population-based study. Prev Chronic Dis, 2014. 11: p. E187. 9.Zheng, P.P., et al., Frailty related all-cause mortality or hospital readmission among adults aged 65 and older with stage-B heart failure inpatients. BMC Geriatr, 2021. 21(1): p. 125. 10.Vidán, M.T., et al., Prevalence and prognostic impact of frailty and its components in non-dependent elderly patients with heart failure. Eur J Heart Fail, 2016. 18(7): p. 869-75. 11.Aung, T., et al., Prevalence and Prognostic Significance of Frailty in Asian Patients With Heart Failure. JACC: Asia, 2021. 1(3): p. 303-313. 12.Fried, L.P., et al., Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci, 2001. 56(3): p. M146-56. 13.Bergman, H., et al., Frailty: an emerging research and clinical paradigm--issues and controversies. J Gerontol A Biol Sci Med Sci, 2007. 62(7): p. 731-7. 14.Arakawa Martins, B., et al., Frailty prevalence using Frailty Index, associated factors and level of agreement among frailty tools in a cohort of Japanese older adults. Arch Gerontol Geriatr, 2019. 84: p. 103908. 15.Shinohara, T., et al., Transition to frailty in older Japanese people during the coronavirus disease 2019 pandemic: a prospective cohort study. Arch Gerontol Geriatr, 2021. 98: p. 104562. 16.Blodgett, J.M., et al., A frailty index from common clinical and laboratory tests predicts increased risk of death across the life course. Geroscience, 2017. 39(4): p. 447-455. 17.Inci, M.G., et al., Frailty Index for prediction of surgical outcome in ovarian cancer: Results of a prospective study. Gynecol Oncol, 2021. 161(2): p. 396-401. 18.Harvey, L.A., et al., Does identifying frailty from ICD-10 coded data on hospital admission improve prediction of adverse outcomes in older surgical patients? A population-based study. Age Ageing, 2021. 50(3): p. 802-808. 19.Jauhari, Y., et al., Construction of the secondary care administrative records frailty (SCARF) index and validation on older women with operable invasive breast cancer in England and Wales: a cohort study. BMJ Open, 2020. 10(5): p. e035395. 20.Orkaby, A.R., et al., The Burden of Frailty Among U.S. Veterans and Its Association With Mortality, 2002-2012. J Gerontol A Biol Sci Med Sci, 2019. 74(8): p. 1257-1264. 21.Kirkwood, T.B., Understanding the odd science of aging. Cell, 2005. 120(4): p. 437-47. 22.Afilalo, J., et al., Role of frailty in patients with cardiovascular disease. Am J Cardiol, 2009. 103(11): p. 1616-21. 23.Vaz Fragoso, C.A., et al., Frailty and respiratory impairment in older persons. Am J Med, 2012. 125(1): p. 79-86. 24.O’Caoimh, R., et al., Prevalence of frailty in 62 countries across the world: a systematic review and meta-analysis of population-level studies. Age and Ageing, 2020. 50(1): p. 96-104. 25.Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1789-1858. 26.Cheng, D., et al., Updating and Validating the U.S. Veterans Affairs Frailty Index: Transitioning From ICD-9 to ICD-10. J Gerontol A Biol Sci Med Sci, 2021. 76(7): p. 1318-1325. 27.Kim, D.H., et al., Measuring Frailty in Medicare Data: Development and Validation of a Claims-Based Frailty Index. J Gerontol A Biol Sci Med Sci, 2018. 73(7): p. 980-987. 28.Metra, M. and J.R. Teerlink, Heart failure. Lancet, 2017. 390(10106): p. 1981-1995. 29.Gheorghiade, M., et al., Acute heart failure syndromes: current state and framework for future research. Circulation, 2005. 112(25): p. 3958-68. 30.Lassus, J.P., et al., Long-term survival after hospitalization for acute heart failure--differences in prognosis of acutely decompensated chronic and new-onset acute heart failure. Int J Cardiol, 2013. 168(1): p. 458-62. 31.Ahmed, A., et al., Incident heart failure hospitalization and subsequent mortality in chronic heart failure: a propensity-matched study. J Card Fail, 2008. 14(3): p. 211-8. 32.Wang, T.D., et al., Nationwide trends in incidence, healthcare utilization, and mortality in hospitalized heart failure patients in Taiwan. ESC Heart Fail, 2020. 7(6): p. 3653-66. 33.Jhund, P.S., et al., Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: a population study of 5.1 million people. Circulation, 2009. 119(4): p. 515-23. 34.Zarrinkoub, R., et al., The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail, 2013. 15(9): p. 995-1002. 35.Bragazzi, N.L., et al., Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol, 2021. 28(15): p. 1682-1690. 36.Collard, R.M., et al., Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc, 2012. 60(8): p. 1487-92. 37.Sanders, N.A., et al., The frailty syndrome and outcomes in the TOPCAT trial. Eur J Heart Fail, 2018. 20(11): p. 1570-1577. 38.Denfeld, Q.E., et al., The prevalence of frailty in heart failure: A systematic review and meta-analysis. Int J Cardiol, 2017. 236: p. 283-289. 39.Marinus, N., et al., Frailty is highly prevalent in specific cardiovascular diseases and females, but significantly worsens prognosis in all affected patients: A systematic review. Ageing Res Rev, 2021. 66: p. 101233. 40.McKechnie, D.G., et al., Frailty and incident heart failure in older men: the British Regional Heart Study. Open Heart, 2021. 8(1). 41.Nadruz, W., Jr., et al., Cardiovascular Dysfunction and Frailty Among Older Adults in the Community: The ARIC Study. J Gerontol A Biol Sci Med Sci, 2017. 72(7): p. 958-964. 42.Uchmanowicz, I., et al., Frailty and the risk of all-cause mortality and hospitalization in chronic heart failure: a meta-analysis. ESC Heart Fail, 2020. 7(6): p. 3427-37. 43.Newman, A.B., et al., Associations of subclinical cardiovascular disease with frailty. J Gerontol A Biol Sci Med Sci, 2001. 56(3): p. M158-66. 44.Kwok, C.S., et al., The Hospital Frailty Risk Score and its association with in-hospital mortality, cost, length of stay and discharge location in patients with heart failure short running title: Frailty and outcomes in heart failure. Int J Cardiol, 2020. 300: p. 184-190. 45.Yamada, S., et al., Prognostic score based on physical frailty in patients with heart failure: a multicenter prospective cohort study (FLAGSHIP). J Cachexia Sarcopenia Muscle, 2021. 12(6): p. 1995-2006. 46.Flores-Álvarez, F.J., et al., Frailty as a predictor of clinical problems and events that require elderly patients with heart failure to use health resources. Arch Gerontol Geriatr, 2022. 101: p. 104698. 47.Kohsaka, S., et al., Association of Diagnostic Coding-Based Frailty and Outcomes in Patients With Heart Failure: A Report From the Veterans Affairs Health System. J Am Heart Assoc, 2020. 9(24): p. e016502. 48.Shashikumar, S.A., et al., Assessment of HF Outcomes Using a Claims-Based Frailty Index. JACC Heart Fail, 2020. 8(6): p. 481-488. 49.McNallan, S.M., et al., Frailty and healthcare utilization among patients with heart failure in the community. JACC Heart Fail, 2013. 1(2): p. 135-41. 50.Khan, M.S., et al., Frailty, Guideline-Directed Medical Therapy, and Outcomes in HFrEF: From the GUIDE-IT Trial. JACC Heart Fail, 2022. 10(4): p. 266-275. 51.Dewan, P., et al., The prevalence and importance of frailty in heart failure with reduced ejection fraction - an analysis of PARADIGM-HF and ATMOSPHERE. Eur J Heart Fail, 2020. 22(11): p. 2123-2133. 52.Tomaselli, G.F. and D.P. Zipes, What causes sudden death in heart failure? Circ Res, 2004. 95(8): p. 754-63. 53.Austin, P.C. and J.P. Fine, Practical recommendations for reporting Fine-Gray model analyses for competing risk data. Stat Med, 2017. 36(27): p. 4391-4400. 54.Ma, L., et al., Prevalence of Frailty and Associated Factors in the Community-Dwelling Population of China. J Am Geriatr Soc, 2018. 66(3): p. 559-564. 55.Hajek, A., et al., Predictors of Frailty in Old Age - Results of a Longitudinal Study. J Nutr Health Aging, 2016. 20(9): p. 952-957. 56.Niederstrasser, N.G., N.T. Rogers, and S. Bandelow, Determinants of frailty development and progression using a multidimensional frailty index: Evidence from the English Longitudinal Study of Ageing. PLoS One, 2019. 14(10): p. e0223799. 57.Burnett, H., et al., Thirty Years of Evidence on the Efficacy of Drug Treatments for Chronic Heart Failure With Reduced Ejection Fraction: A Network Meta-Analysis. Circ Heart Fail, 2017. 10(1): p. e003529. 58.Ruff, C.T., et al., Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet, 2014. 383(9921): p. 955-62. 59.Shebeshi, D.S., X. Dolja-Gore, and J. Byles, Validation of hospital frailty risk score to predict hospital use in older people: Evidence from the Australian Longitudinal Study on Women's Health. Arch Gerontol Geriatr, 2021. 92: p. 104282. 60.Pandey, A., et al., Frailty Among Older Decompensated Heart Failure Patients: Prevalence, Association With Patient-Centered Outcomes, and Efficient Detection Methods. JACC Heart Fail, 2019. 7(12): p. 1079-1088. 61.Zhang, Y., et al., Frailty and Clinical Outcomes in Heart Failure: A Systematic Review and Meta-analysis. J Am Med Dir Assoc, 2018. 19(11): p. 1003-1008.e1. 62.Arrigo, M., P. Nijst, and A. Rudiger, Optimising Heart Failure Therapies in the Acute Setting. Card Fail Rev, 2018. 4(1): p. 38-42. 63.Taylor, C.J., et al., Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study. Bmj, 2019. 364: p. l223. 64.Wammes, J.J.G., et al., Characteristics and health care utilization among patients with chronic heart failure: a longitudinal claim database analysis. ESC Heart Fail, 2019. 6(6): p. 1243-1251. 65.McMurray, J.J., et al., Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med, 2014. 371(11): p. 993-1004. 66.Chen, D.Y., et al., Clinical outcomes of Sacubitril/Valsartan in patients with acute heart failure: A multi-institution study. EClinicalMedicine, 2021. 41: p. 101149. 67.Anker, S.D., et al., Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med, 2021. 385(16): p. 1451-1461. 68.McMurray, J.J.V., et al., Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med, 2019. 381(21): p. 1995-2008. 69.Butt, J.H., et al., Efficacy and Safety of Dapagliflozin According to Frailty in Heart Failure With Reduced Ejection Fraction : A Post Hoc Analysis of the DAPA-HF Trial. Ann Intern Med, 2022. 70.Aili, S.R., et al., Prevention and Reversal of Frailty in Heart Failure - A Systematic Review. Circ J, 2021. 86(1): p. 14-22. 71.Kitzman, D.W., et al., Physical Rehabilitation for Older Patients Hospitalized for Heart Failure. N Engl J Med, 2021. 385(3): p. 203-216. 72.Kehler, D.S., et al., Prevalence of frailty in Canadians 18-79 years old in the Canadian Health Measures Survey. BMC Geriatr, 2017. 17(1): p. 28. 73.Lin, S.Y., et al., Frailty Index Predicts All-Cause Mortality for Middle-Aged and Older Taiwanese: Implications for Active-Aging Programs. PLoS One, 2016. 11(8): p. e0161456. 74.Gilbert, T., et al., Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. Lancet, 2018. 391(10132): p. 1775-1782.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85184-
dc.description.abstract研究背景 衰弱是心臟衰竭病人中重要的議題,由於心臟衰竭被診斷出來多屬於老年時期,因此心臟衰竭的病人也有一半的人伴隨有衰弱的表徵。而衰弱與心臟衰竭並存不僅會對個人造成不良影響,也可能增加醫療利用負擔。如何評估並量化衰弱之於心臟衰竭病人的影響,例如死亡、再住院與處方型態,在現今的高齡化社會格外重要。 研究目的 本研究擬利用ICD-10版本診斷碼建立多重共病衰弱指數(mFI-v10),並應用於老年人和因心臟衰竭而首次住院的病人,同時也比較本次建立之mFI-v10與過去本研究室以ICD-9版本診斷碼建立的多重共病衰弱指數(mFI-v9),對於因心臟衰竭而首次住院的病人之不良結果、醫療利用、處方型態和衰弱狀態變化之間的關聯。 研究方法 本研究主要分成兩個部分,第一部分會利用健保資料庫建立mFI-v10,,並分析其於老年族群之應用,包含衰弱程度分群及其與不良結果(全因性死亡、非計劃性住院和ICU住院)的關聯性。第二部分則是將mFI-v10,進一步應用到心臟衰竭的病人,由於研究目的之一是希望比較不同診斷碼系統下所建立的多重共病衰弱指數的臨床應用性,因此本部分會分成兩個不同世代,分別是2013年世代(ICD-9)與2018年世代(ICD-10),分別利用mFI-v9與mFI-v10,區分研究對象為健康組(fit)、輕度衰弱(mild frailty)、中度衰弱(moderate frailty)與嚴重衰弱(severe frailty),並使用Cox風險比例模型探討不同衰弱程度與結果之相關性,包含全因性死亡、全因性再住院、心衰竭再住院及綜合指標(全因性死亡或心衰竭再住院)。處方型態則是使用間斷時間序列分析(interrupted time series analysis)衡量臨床指引建議之心衰竭相關藥物的處方用量變化,並比較發生指標住院事件前後用量的差異。由於衰弱狀態可能隨著時間變動,因此使用桑基圖(sankey plot)來描述追蹤期間衰弱狀態的變化。 研究結果 第一部分研究利用144,567位65-100歲的老年研究對象,所建立之多重共病衰弱指數(mFI-v10)涵蓋38個不同的共病缺陷(deficits),其中循環系統(circulatory system)相關的缺陷數佔將近1/4。研究對象平均年齡為73.97歲,平均多重共病衰弱指數(mFI-v10)為0.051(標準差為0.048),有52%的研究對象為輕微衰弱以上,且比率隨著年齡上升提高。 在一年的追蹤期之中,與健康組相比,在校正性別與年齡之後,都可以觀察到,隨著衰弱程度上升,則全因性死亡、非計劃性住院還是ICU住院的風險也跟著提高。相比於健康組,嚴重衰弱組的一年死亡風險為3.86(95% 信賴區間為3.54-4.20),一年非計畫性住院風險則為3.71(95% 信賴區間為3.49-3.94),而一年ICU住院風險則為3.98(95% 信賴區間為3.64-4.35),以上皆達到統計上顯著差異(P<0.0001) 第二部分研究的2013年世代之中,首次因為心臟衰竭而住院的共計44044人,而在2018年世代之中則是50474人,2013年世代平均年齡為74.9歲,而2018年世代為74.7歲。兩個世代中隨著衰弱程度的提高,年齡的平均數與中位數皆越高(P<0.0001),與2013年世代相比,2018年世代的平均多重共病衰弱指數較高(0.142 vs 0.12),輕微衰弱以上的比例上升 (78.28% vs 72.45%)。 在本研究中發現,不論是2013年世代或是2018年世代,衰弱會顯著增加全因性死亡、全因性住院、或是心衰竭住院的風險。此外,心臟衰竭合併衰弱的患者在5年的觀察期間,都具有高度醫療資源利用的特性。 發生指標住院事件前兩個月,不論世代皆觀察到不論是用藥比例上或是人數上都有一個較為明顯的攀升,並且在住院當下達到最高峰,雖然出院之後平均心臟衰竭用藥使用種類上升,但是隨著時間不論是用藥人數的比例,還是平均使用的數量都有下降的趨勢,同時也發現不同衰弱程度的病患處方型態有所差異。 心衰竭病人的衰弱狀態會隨著時間變化而有所改變甚至回復,在2013年世代基線原有28%是健康組,到了出院後兩年後約有25%的人處於健康狀態,2018年世代則是基線原有22%,而到了出院後兩年則是34%。 結論: 心臟衰竭住院的病人衰弱盛行率高,且隨著衰弱程度上升,不良結果和資源使用也隨之提高。衰弱狀態會隨著時間變動,甚至也可能回復,故心衰竭合併衰弱的病人應接受更為全面性的照護計畫。藥品處方型態在不同衰弱程度病人有所不同,也使得心衰竭的用藥策略需要朝向更為個人化的方向前進,而mFI-v9和mFI-v10則可以作為臨床結果和醫療資源利用的風險分層工具,應用於一般老年人及心臟衰竭的病人。zh_TW
dc.description.abstractBackground: Frailty often coexists with heart failure (HF) and may have negative impacts on adverse outcomes among HF patients. How to quantify and characterize the impact of frailty on clinical outcomes among HF patients in an aging society is thus critical. Objectives: Owing to the transition of coding system (from ICD-9-CM to ICD-10-CM) in Taiwan since 2016, we aimed to develop a new version of frailty index, and use the multimorbidity frailty index (mFI) developed under the ICD-9-CM or ICD-10-CM codes to estimate the prevalence of frailty and its impact on mortality and healthcare utilization among HF patients. Changes and associated impact on quantification of frailty among HF patients between versions in 2013 (ICD-9 era) and 2018 (ICD-10 era) were also captured. Methods: In the first part, we updated the multimorbidity frailty index using ICD-10 CM codes (mFI-v10) from Taiwan’s National Health Insurance Research Database (NHIRD) and examined the association between frailty and all-cause mortality, unplanned hospitalization, or ICU admission by the updated mFI-v10. In the second part, we identified patients aged over 40 years old and newly admitted for heart failure (index event), who discharged from the index event in 2013 (ICD-9-CM era) and 2018 (ICD-10-CM era). Frailty was measured by the relevant frailty index developed under ICD-9 CM (mFI-v9) or ICD-10 CM codes (mFI-v10) for HF patients identified in the year 2013 and 2018 cohorts. All study subjects were further categorized into: fit, mild frailty, moderate frailty, or severe frailty based on the quartiles of mFI. Outcomes of interest (all-cause mortality, all-cause readmission, readmission due to heart failure and composite endpoint of all-cause mortality or readmission due to heart failure) were reported. Cox regression models were used to estimate the impacts of frailty on outcomes of interest, and interrupted time series analysis was used to evaluate the prescribing trend between pre-index period and post-index period. We also use sankey plot to describe the transitions of frailty status in the following-up period. Results: In the first part, we updated the mFI-v10 incorporated 38 deficits using ICD-10 codes, with mean mFI-v10 score of 0.051 (standard deviation = 0.048) among 144,567 subjects. Compared with the fit group, those with severe frailty were associated with a 4-fold (adjusted HR 3.86, 95% CI 3.54-4.20) higher risk for death at one year. Subjects with moderate frailty or mild frailty were associated with a 2.4-fold (adjusted HR 2.35, 95% CI 2.18–2.55) or 1.6-fold (adjusted HR 1.57, 95% CI 1.47–1.69) higher risk for death at one year than the fit group. Similar risk trends can also be observed in unplanned hospitalization and ICU (intensive care unit) admission among the study population In the second part, we identified 44,044 and 50,474 HF patients in the year 2013 and 2018, respectively. The proportion of frailty measured by mFI-v9 and mFI-v10 among HF patients were 72.5% in 2013 (mild 42.0%; moderate 24.8% and severe frailty 5.7%) and 78.3% (mild 50.0%; moderate 18.3% and severe frailty 10.0%) in 2018. Compared with the 2013 cohort, 2018 cohort had a higher mean mFI (0.142 vs 0.120). Compared with the fit group, those with severe frailty were associated with a 1.2-fold (adjusted HR 1.24, 95% CI 1.211.15-1.381.35) higher risk for 1-year mortality in the 2013 HF cohort and 1.2-fold (adjusted HR 1.18, 95% CI 1.10-1.27) in the 2018 HF cohort, respectively. Similar risk trends can also be observed in all-cause mortality, all-cause readmission, readmission due to heart failure and composite endpoint of all-cause mortality or readmission due to heart failure among the heart failure patients, irrespective of the study cohort. The average use of both outpatients and emergency visits remained high. An increasing trend of average number of HF medication was observed two months prior the index event, with the greatest number during the index hopsitalzation period. After discharged from the index hospitalization, the average number of HF medication gradually decreased as well as the proportion of patients taking any HF medication in both the 2013 cohort and 2018 cohort. The prescribing pattern varies across frailty status. The transition of frailty status was observed, with the majority of transitions either stay at same stauts or became frailer. Conclusions Using the nationwide, claims-based NHIRD in Taiwan, our study reveals that the proportion of frailty measured by mFI increased in newly admitted HF patients as comparing the 2013 and 2018 HF cohorts. In addition, HF patients with frailty were associated with a higher risks of mortality and readmissions compared with the fit group. Considering the prescribing pattern varies across frailty status, a tailored medication strategy may be warranted. HF care programs adopting mFI for risk stratifications are therefore suggested.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:48:49Z (GMT). No. of bitstreams: 1
U0001-0408202217025800.pdf: 5136358 bytes, checksum: 759f51a3cbb8ff17e983708a7b910e7a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 中文摘要 ii ABSTRACT v CONTENTS viii LIST OF FIGURES xii LIST OF TABLES xv 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第 2 章 文獻回顧 3 2.1 衰弱的定義 3 2.1.1 衰弱表型(Fried’s Phenotype): 3 2.1.2 衰弱指數(frailty index) 3 2.2 老人與衰弱 4 2.2.1 老年族群與衰弱之文獻回顧:醫療利用與不良臨床結果 5 2.3 心臟衰竭 8 2.3.1 心臟衰竭的定義 8 2.3.2 急性失償性心臟衰竭 8 2.3.3 心臟衰竭的流行病學 9 2.4 心臟衰竭與衰弱 9 第 3 章 研究方法 18 3.1 研究資料來源 18 3.2 研究架構 18 3.3 第一部分:建立ICD-10版本多重共病衰弱指數(mFI-v10) 20 3.3.1 研究設計納入與排除條件 20 3.3.2 建立mFI-v10 20 3.3.3 mFI-v10的計算 21 3.3.4 應用mFI-v10 於65歲以上老年人 21 3.3.5 研究變項 23 3.4 第二部分:應用mFI-v10 於心臟衰竭病人 25 3.4.1 研究設計及納入、排除條件 25 3.4.2 研究終點及追蹤期間定義 27 3.4.3 追蹤期間及設限條件之定義 28 3.4.4 目標族群衰弱狀態之計算 28 3.4.5 研究變項 29 3.4.6 心臟衰竭用藥 31 3.5 統計分析 32 3.5.1 敘述性統計 32 3.5.2 推論性統計 32 3.5.3 中斷時間序列分析(Interrupted time series analysis, ITS) 32 3.6 敏感性分析 33 第 4 章 研究結果 35 4.1 第一部分:應用mFI-v10 於65歲以上老年人 35 4.1.1 研究對象基本特性: 36 4.1.2 臨床結果 39 4.2 第二部分:應用mFI-v10 於心衰竭病人 41 4.2.1 研究族群建立 41 4.2.2 病人特性 44 4.2.3 臨床結果:死亡與住院 56 4.2.4 其他醫療利用 77 4.2.5 處方型態分析 83 4.2.6 衰弱狀態變化 98 4.3 敏感性分析 101 4.4 次族群分析 105 第 5 章 討論 110 5.1 第一部分:應用mFI-v10 於老年人 110 5.1.1 老人與衰弱 110 5.1.2 多重共病衰弱指數建立方法 111 5.2 第二部分:應用mFI-v10 於心臟衰竭病人 111 5.2.1 心臟衰竭與衰弱 111 5.2.2 臨床結果分析討論 112 5.2.3 處方型態分析 114 5.2.4 衰弱狀態改變 115 第 6 章 研究特點與限制 116 6.1 第一部分: 116 6.2 第二部分 117 第 7 章 結論 119 參考資料 120 附錄 125
dc.language.isozh-TW
dc.subject老人zh_TW
dc.subject醫療資源利用zh_TW
dc.subject再住院zh_TW
dc.subject死亡zh_TW
dc.subject心臟衰竭zh_TW
dc.subject衰弱zh_TW
dc.subjectmortalityen
dc.subjectreadmissionen
dc.subjectelderlyen
dc.subjectfrailtyen
dc.subjecthealthcare utilizationen
dc.subjectheart failureen
dc.title以ICD-10疾病診斷系統建立之多重共病衰弱指數與其於心衰竭病患之臨床應用zh_TW
dc.titleThe Development of Frailty Index Using ICD-10 Codes and Its Clinical Applications in Patients with Heart Failureen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳亮恭(Liang-Kung Chen),陳文鍾(Wen-Jone Chen),徐莞曾(Wan-Tseng Hsu)
dc.subject.keyword衰弱,老人,心臟衰竭,死亡,再住院,醫療資源利用,zh_TW
dc.subject.keywordfrailty,elderly,heart failure,mortality,readmission,healthcare utilization,en
dc.relation.page140
dc.identifier.doi10.6342/NTU202202068
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床藥學研究所zh_TW
dc.date.embargo-lift2025-10-24-
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
U0001-0408202217025800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved