Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85172
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鐘嘉德(Char-Dir Chung),陳維昌(Wei-Chang Chen)
dc.contributor.authorChang-Hung Luen
dc.contributor.author盧長宏zh_TW
dc.date.accessioned2023-03-19T22:48:05Z-
dc.date.copyright2022-10-12
dc.date.issued2022
dc.date.submitted2022-08-08
dc.identifier.citation[1] R. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., San Francisco, CA, USA, Mar. 2017, pp. 1–6. [2] R. Hadani et al., Orthogonal Time Frequency Space Modulation. Accessed: Aug. 2018. [Online]. Available: https://arxiv.org/pdf/1808.00519.pdf [3] G. D. Surabhi and A. Chockalingam, “Low-complexity linear equalization for OTFS modulation,” IEEE Commun. Lett., vol. 24, no. 2, pp. 330–334, Feb. 2020. [4] S. Tiwari, S. S. Das, and V. R. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2205–2209, Dec. 2019. [5] T. Zemen, M. Hofer, D. Loschenbrand, and C. Pacher, “Iterative detection for orthogonal precoding in doubly selective channels,” in Proc. IEEE 29th Int. Symp. Pers. Indoor Mobile Radio Commun., Sep. 2018, pp. 1–7. [6] P. Raviteja et al., “Low-complexity iterative detection for orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., Barcelona, Apr. 2018, pp. 1–6. [7] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, Oct. 2018. [8] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Tech., vol. 68, no. 1, pp. 957–961, Jan. 2019. [9] P. Raviteja, E. Viterbo, and Y. Hong, “OTFS performance on static multipath channels,” IEEE Commun. Lett., vol. 8, no. 3, pp. 745–748, Jun. 2019. [10] X. Xu, M. -M. Zhao, M. Lei and M. -J. Zhao, “A Damped GAMP Detection Algorithm for OTFS System based on Deep Learning,” in Proc. 2020 IEEE 92nd Veh. Technol. Conf. (Virtual), pp. 1-5, Nov. 2020 [11] S. Rangan, P. Schniter, A. K. Fletcher and S. Sarkar, “On the Convergence of Approximate Message Passing With Arbitrary Matrices,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5339-5351, Sept. 2019. [12] Z. Yuan, F. Liu, W. Yuan, Q. Guo, Z. Wang and J. Yuan, “Iterative Detection for Orthogonal Time Frequency Space ModulationWith Unitary Approximate Message Passing,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 714-725, Feb. 2022. [13] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang and X. Dai, “Low Complexity Receiver via Expectation Propagation for OTFS Modulation,” IEEE Commun. Lett., vol. 25, no. 10, pp. 3180-3184, Oct. 2021. [14] W. Yuan, Z. Wei, J. Yuan, and D. W. K. Ng, “A simple variational bayes detector for orthogonal time frequency space (OTFS) modulation,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7976–7980, Jul. 2020. [15] H. Zhang and T. Zhang, “A low-complexity message passing detector for OTFS modulation with probability clipping,” IEEE Wireless Commun. Lett., vol. 10, no. 6, pp. 1271–1275, Jun. 2021. [16] S. Li et al., “Hybrid MAP and PIC detection for OTFS modulation,” IEEE Trans. Veh. Tech., vol. 70, no. 7, pp. 7193–7198, Jul. 2021. [17] L. Xiang, Y. Liu, L. -L. Yang and L. Hanzo, “Gaussian Approximate Message Passing Detection of Orthogonal Time Frequency Space Modulation,” IEEE Trans. Veh. Tech., vol. 70, no. 10, pp. 10999-11004, Oct. 2021. [18] T. Thaj and E. Viterbo, “Low Complexity Iterative Rake Decision Feedback Equalizer for Zero-Padded OTFS Systems,” IEEE Trans. Veh. Tech., vol. 69, no. 12, pp. 15606-15622, Dec. 2020. [19] A. Farhang, A. RezazadehReyhani, L. E. Doyle, and B. Farhang-Boroujeny, “Low complexity modem structure for OFDM-based orthogonal time frequency space modulation,” IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 344–347, Jun. 2018. [20] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “Peak-to-average power ratio of OTFS modulation,” IEEE Commun. Lett., vol. 23, no. 6, pp. 999–1002, Jun. 2019. [21] S. Gao and J. Zheng, “Clipping noise recovery of OTFS signals using reliability-based compressed sensing,” IEEE Trans. Veh. Technol., vol. 70, no. 7, pp. 7187–7192, Jul. 2021. [22] C. Naveen and V. Sudha, “Peak-to-average power ratio reduction in OTFS modulation using companding technique,” in Proc. Int. Conf. Dev., Circ. Syst., Coimbatore, Mar. 2020, pp. 140-143. [23] M. Liu, M. -M. Zhao, M. Lei and M. -J. Zhao, “Autoencoder Based PAPR Reduction for OTFS Modulation,” in Proc. 2021 IEEE 94th Veh. Technol. Conf. (Virtual), pp. 1-5, Sep. 2021 [24] C. An and H.-G. Ryu, “Design and performance evaluation of spectral efficient orthogonal time frequency space system,” in Proc. IEEE 5G World Forum, Oct. 2019, pp. 249-252. [25] M. N. Hossain, Y. Sugiura, T. Shimamura, and H.-G. Ryu, “Waveform design of low complexity WR-OTFS system for the OOB power reduction,” in Proc. IEEE Wireless Commun. Netw. Conf. (Virtual), May 2020, pp. 1-5. [26] T.Wang, J. G. Proakis, E. Masry, and J. R. Zeidler, “Performance degradation of OFDM systems due to Doppler spreading,” IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1422–1432, Jun. 2006. [27] J. Zhang, A. D. S. Jayalath, and Y. Chen, “Asymmetric OFDM systems based on layered FFT structure,” IEEE Signal Process. Lett., vol. 14, no. 11, pp. 812–815, Nov. 2007. [28] G. Matz, H. Bolcskei, and F. Hlawatsch, “Time-frequency foundations of communications: Concepts and tools,” IEEE Signal Process. Mag., vol. 30, no. 6, pp. 87–96, Nov. 2013. [29] K. Liu, T. Kadous, and A. M. Sayeed, “Orthogonal time-frequency signaling over doubly dispersive channels,” IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2583–2603, Nov. 2004. [30] T. Dean, M. Chowdhury, and A. Goldsmith, “A new modulation technique for Doppler compensation in frequency-dispersive channels,” in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., Oct. 2017, pp. 1–7. [31] C. H. Yuen and B. Farhang-Boroujeny, “Analysis of the optimum precoder in SCFDMA,” IEEE Trans. Wireless Commun., vol. 11, no. 11, pp. 4096-4107, Nov. 2012. [32] W. R. Bennett, Introduction to Signal Transmission. New York: McGraw Hill, 1970. [33] W.-C. Chen, C.-D. Chung, and P.-H. Wang, “Pre-equalized and spectrally precoded OFDM,” IEEE Trans. Veh. Technol., 2020, submitted for publication. [34] L. Wei and C. Schlegel, “Synchronization requirements for multi-user OFDM on satellite mobile and two-path Rayleigh fading channels,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 887-895, Feb./Mar./Apr. 1995. [35] M. Sharique and A. K. Chaturvedi, “A new family of time-limited Nyquist pulses for OFDM systems,” IEEE Commun. Lett., vol. 20, no. 10, pp. 1943-1946, Oct. 2016. [36] M. Faulkner, “The effect of filtering on the performance of OFDM systems,” IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1877-1884, Sep. 2000. [37] T. Frank, A. Klein, and T. Haustein, “A survey on the envelope fluctuations of DFT precoded OFDMA signals,” in Proc. IEEE Int. Conf. Commun., pp. 5428-5432, Beijing, China, May 2008. [38] T. Weiss, J. Hillenbrand, A. Krohn, and F. Jondral, “Mutual interference in OFDMbased spectrum pooling systems,” in Proc. IEEE Veh. Technol. Conf., Milan, Italy, May 2004. [39] E. Güvenkaya, A. ¸ Sahin, E. Bala, R. Yang, and H. Arslan, “A windowing technique for optimal time-frequency concentration and ACI rejection in OFDM-based systems,” IEEE Trans Commun., vol. 63, no. 12, pp. 4977-4989, Dec. 2015. [40] M. M. Naghsh, E. H. M. Alian, S. Khobahi, and O. Rezaei, “A majorizationminimization approach for reducing out-of-band radiations in OFDM systems,” IEEE Commun. Lett., vol. 21, no. 8, pp. 1739-1742, Aug. 2017. [41] A. Tom, A. ¸ Sahin, and H. Arslan, “Suppressing alignment: Joint PAPR and out-of-band power leakage reduction for OFDM-based systems,” IEEE Trans Commun., vol. 64, no. 3, pp. 1100-1109, Mar. 2016. [42] S. Brandes, I. Cosovic, and M. Schnell, “Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers,” IEEE Commun. Lett., vol. 10, no. 6, pp. 420-422, Jun. 2006. [43] J. F. Schmidt, D. Romero and R. López-Valcarce, “Active interference cancellation for OFDM spectrum sculpting: Linear processing is optimal,” IEEE Commun. Lett., vol. 18, no. 9, pp. 1543-1546, Sep. 2014. [44] I. Cosovic, S. Brandes, and M. Schnell, “Subcarrier weighting: A method for sidelobe suppression in OFDM systems,” IEEE Commun. Lett., vol. 10, no. 6, pp. 444-446, Jun. 2006. [45] A. Tom, A. ¸ Sahin, and H. Arslan, “Mask compliant precoder for OFDM spectrum shaping,” IEEE Commun. Lett., vol. 17, no. 3, pp. 447-450, Mar. 2013. [46] M. M. Naghsh and M. J. Omidi, “Reduction of out of band radiation using carrier-bycarrier partial response signalling in orthogonal frequency division multiplexing,” IET Communications, vol. 4, no. 12, pp. 1433-1442, Aug. 2010. [47] M. M. Naghsh and M. J. Omidi, “Partial response signaling: A powerful tool for spectral shaping in cognitive radio systems,” Foundation of Cognitive Radio Systems, pp. 143-166, Mar. 2012. [48] C.-D. Chung, “Correlatively coded OFDM,” IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 2044-2049, Aug. 2006. [49] —, “Spectrally precoded OFDM,” IEEE Trans. Commun., vol. 54, no. 12, pp. 2173-2185, Dec. 2006. [50] —, “Spectral precoding for rectangularly pulsed OFDM,” IEEE Trans. Commun., vol. 56, no. 9, pp. 1498-1510, Sep. 2008. [51] J. van de Beek, “Orthogonal multiplexing in a subspace of frequency well-localized signals,” IEEE Commun. Lett., vol. 14, no. 10, pp. 882-884, Oct. 2010. [52] J. van de Beek and F. Berggren, “N-continuous OFDM,” IEEE Commun. Lett., vol. 13, no. 1, pp. 1-3, Jan. 2009. [53] L. Dan, C. Zhang, J. Yuan, P. Wen, and B. Fu, “Improved N-continuous OFDM using adaptive power allocation,” in Proc. IEEE 8th Annual Comput. and Commun. Workshop and Conf., pp. 937-940, Las Vegas, USA, Jan. 2018. [54] H.-M. Chen, W.-C. Chen and C.-D. Chung, “Spectrally precoded OFDM and OFDMA with cyclic prefix and unconstrained guard ratios,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1416-1427, May 2011. [55] W.-C. Chen and C.-D. Chung, “Spectral precoding for cyclic-prefixed OFDMA with interleaved subcarrier allocation,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4616-4629, Nov. 2013. [56] T.-W.Wu and C.-D. Chung, “Spectrally precoded DFT-based OFDM and OFDMA with oversampling,” IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2769-2783, Jul. 2014. [57] T.-W.Wu and C.-D. Chung, “Correlatively precoded OFDM with reduced PAPR,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1409-1419, Mar. 2016. [58] C.-D. Chung and K.-W. Chen, “Spectrally precoded OFDM without guard insertion,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 107-121, Jan. 2017. [59] M. Ma, X. Huang, B. Jiao, and Y. J. Guo, “Optimal orthogonal precoding for power leakage suppression in DFT-based systems,” IEEE Trans. Commun., vol. 59, no. 3, pp. 844-853, Mar. 2011. [60] M. Mohamad, R. Nilsson, and J. van de Beek, “A novel transmitter architecture for spectrally-precoded OFDM,” IEEE Trans. Circuits and Systems I, vol. 65, no. 8, Aug. 2018. [61] J. Zhang, X. Huang, A. Cantoni, and Y. J. Guo, “Sidelobe suppression with orthogonal projection for multicarrier systems,” IEEE Trans. Commun., vol. 60, no. 2, pp. 589-599, Feb. 2012. [62] A. Fish, S. Gurevich, R. Hadani, A. M. Sayeed and O. Schwartz, “Delay-Doppler Channel Estimation in Almost Linear Complexity,”IEEE Trans. Inf. Theory , vol. 59, no. 11, pp. 7632-7644, Nov. 2013 [63] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Transmitter and receiver window designs for orthogonal time-frequency space modulation,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2207–2223, Apr. 2021. [64] T. J. Baker, “Asymptotic behavior of digital FM spectra,” IEEE Trans. Commun., vol. 22, vol. 10, pp. 1585-1594, Oct. 1974. [65] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge University Press, 2012. [66] Y.-S. Wang and C.-D. Chung, “Closed-form expressions for orthogonal tail-decaying precoders,” unpublished note, 2012. [67] J. Riordan, Combinatorial Identities, New York: Wiley, 1968. [68] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. New York: Academic Press, 1994. [69] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008. [70] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore and London: Johns Hopkins University Press, 1996. [71] D. W. Walker, T. Aldcroft, A. Cisneros, G. C. Fox, and W. Furmanski, “LU decomposition of banded matrices and the solution of linear systems on hypercubes,” in Proc. 3rd Conf. Hypercube Concurrent Comput. Appl. (CP), vol. 2. New York, NY, USA: ACM, 1988, pp. 1635–1655. [72] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. John Wiley & Sons, Inc., 2006. [73] S. J. Press, Applied Multivariate Analysis. Holt, Rinehart and Winston Inc., 1972. [74] 3GPP TS 38.212 V15.0.0, NR; Multiplexing and channel coding, Jul. 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85172-
dc.description.abstract正交時頻空間 (orthogonal time frequency space; OTFS) 系統為一種高效的多載波調變技術,用於具雙重選擇性通道 (doubly selective channels) 上作數據幀之傳輸,此通道有著顯著的都卜勒及延遲擴散效應。透過擴散數據符元至時間-頻率域,OTFS系統相較於正交分頻多工 (orthogonal frequency-division multiplexing; OFDM) 等傳統的多載波調變技術,其能夠利用多路徑分集並對延遲-都卜勒位移有著適應性及穩健性。當矩形脈波被採用為整形脈波時,OTFS可有效地透過由OFDM區塊訊號組成之幀訊號來實現傳輸,並且於都卜勒變化之通道色散環境下其錯誤性能優於OFDM。然而,由於矩形脈波的不連續性,矩形脈波的OTFS受到以f^-2衰減的大功率頻譜旁波瓣影響,從而造成鬆散的功率頻譜。在本篇論文中,具I級冗餘之頻譜預編碼結合矩形脈波的OTFS使得頻譜緊密有著較小的旁波瓣以f^-2I-2或更快的衰減。關於頻譜預編碼式OTFS (spectrally-precoded OTFS; SP-OTFS) 的峰均功率比 (peak-to-average power ratio; PAPR)、可實現的數據速率(achievable data rate; ADR)、頻譜效率 (spectral efficiency) 和等化符元決策等特性亦於本篇論文中作了研究與探討。zh_TW
dc.description.abstractOrthogonal time frequency space (OTFS) is a power-efficient multicarrier modulation for data frame transmission over doubly dispersive channels exhibiting large Doppler spread and sparse delay spread. By spreading data symbols in the time-frequency domain, the OTFS system enables the exploitation of diversity in multipath components and is thus resilient and robust to delay-Doppler shifts, when compared with traditional multicarrier modulation schemes like orthogonal frequency-division multiplexing (OFDM). When rectangular pulse is adopted as the shaping pulse, OTFS can be practically and efficiently signaled by a frequency-space precoded frame of OFDM block signals and outperforms OFDM in error performance over Doppler-variant channel dispersion. However, due to the discontinuity in rectangular pulse, the rectangularly-pulsed OFDM-based OFTS suffers large power spectral sidelobes decaying slowly as f^-2 and thus renders loose power spectrum. In this thesis, spectral precoding with a level-I redundancy is integrated with rectangularly-pulsed OFDM-based OTFS to make the compact power spectrum rendering small sidelobes decaying as f^-2I-2 or faster. The characteristics of peak-to-average power ratio, achievable data rate, spectral efficiency, and equalized symbol decision are also investigated for the proposed spectrally-precoded OTFS scheme.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:48:05Z (GMT). No. of bitstreams: 1
U0001-0408202211131700.pdf: 4962151 bytes, checksum: 1734f5910d880695eb3b7044def30670 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAbstract i Contents ii List of Figures iii List of Tables iv 1 Introduction 1 1.1 Review of OTFS Concept, Waveform and System 1 1.2 Review of OTFS Data Decision Methods 4 1.3 Review of OTFS PAPR Reduction Methods 7 1.4 Review of Spectral Sidelobe Suppressions 9 1.5 Thesis Motivation and Contributions 10 1.6 Notations 11 2 System Model and Fast sidelobe Decaying Constraints 13 2.1 System and Signal Model 13 2.2 Fast Sidelobe Decaying Constraints 18 3 Design of OTFS Spectral Precoders 22 3.1 Design of Spectral Precoding Matrix 22 3.2 Design of Spectral Precoders with PAPR Reduction 27 3.3 Numerical and Simulation Results 29 3.3.1 Power Spectral Compactness Characteristics 29 3.3.2 PAPR Characteristics 31 3.4 Chapter Summary 32 4 Coherent Receiver Architecture, Spectral Efficiency and Detection 36 4.1 OTFS Receiver Architecture 36 4.2 Achievable Data Rate 41 4.3 Equalization-Aided Symbol Decision 45 4.3.1 Low-Complexity Time Domain Equalization 45 4.3.2 Delay-Dopper Domain Symbol Decision 48 4.4 Symbol Decision Performance Analysis 49 4.5 Numerical and Simulation Results 51 4.5.1 Channel Parameters Setting 51 4.5.2 Achievable Data Rate and Spectral Efficiency Characteristics 52 4.5.3 Equalized Symbol Decision Characteristic 55 4.6 Complexity Analysis 60 4.6.1 Symbol Decision Operation Complexity 60 4.6.2 Symbol Decision Performance Analysis Complexity 60 4.7 Chapter Summary 61 5 Conclusion 63 Bibliography 64 6 Appendix 73 6.1 Appendix A. Proof That U is Orthogonal and Meets Equation 73 6.2 Appendix B. Derivation of (3.5) and (3.6) 75 6.3 Appendix C. Derivation of (4.16) 76
dc.language.isoen
dc.subject頻譜效率zh_TW
dc.subject正交時頻空間調變zh_TW
dc.subject雙重選擇性通道zh_TW
dc.subject頻譜預編碼zh_TW
dc.subject旁波瓣抑制zh_TW
dc.subjectorthogonal time frequency space modulationen
dc.subjectspectral efficiencyen
dc.subjectsidelobe suppressionen
dc.subjectspectral precodingen
dc.subjectdoubly dispersive channelen
dc.titleOTFS系統中的頻譜預編碼式帶外功率降低法zh_TW
dc.titleSpectral Precoding for Out-of-Band Power Reduction in OTFS Systemsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王晉良(Chin-Liang Wang),古孟霖(Meng-Lin Ku),李穎(Ying Li)
dc.subject.keyword正交時頻空間調變,雙重選擇性通道,頻譜預編碼,旁波瓣抑制,頻譜效率,zh_TW
dc.subject.keywordorthogonal time frequency space modulation,doubly dispersive channel,,spectral precoding,sidelobe suppression,spectral efficiency,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202202046
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
dc.date.embargo-lift2024-08-08-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0408202211131700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved