請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85169完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊國鑫(Kuo-Hsin Yang) | |
| dc.contributor.author | Jia-Jing Lin | en |
| dc.contributor.author | 林佳靜 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:47:55Z | - |
| dc.date.copyright | 2022-08-12 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-08 | |
| dc.identifier.citation | AASHTO (2002). Standard Specifications for Highway Bridges, 17th edn. American Association of State Highway and Transportation Officials, Washington, DC, USA. ASTM D3080. (2011). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions”, ASTM International, USA. ASTM D4595. (2017). “Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method“, ASTM International, USA. ASTM D5084. (2008). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International, USA. ASTM D5321. (2008). Standard Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method. ASTM International, USA. ASTM D6836. (2008). Standard test methods for determination of the soil water characteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and/or centrifuge: ASTM International, West Conshohocken, PA, USA. Balakrishnan, S., & Viswanadham, B. (2019). Centrifuge model studies on the performance of soil walls reinforced with sand-cushioned geogrid layers. Geotextiles and Geomembranes, 47(6), 803-814. Bathurst, R. (2014). The Bridge and Structural Engineer. The Bridge and Structural Engineer, 44, 15-24. Berg, R. R., Christopher, B. R., & Samtani, N. C. (2009). Design of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume I [Tech Report]. BS 8006-1. (2010). Code of practice for strengthened/reinforced soils and other fills. British Standards Institution. Buckingham, E. (1914). On Physically Similar Systems; Illustrations of the Use of Dimensional Equations. Physical Review, 4(4), 345-376. Cargill, K. W., & Ko, H.-Y. (1983). Centrifugal modeling of transient water flow. Journal of Geotechnical Engineering, 109(4), 536-555. Chou, N. N., Yang, K.-H., Barrett, B., Wu, H.-M., & Liu, T.-Y. (2020). Sustainable Characteristics of Reinforced Soil Structures–from Ancient Great Walls to Modern GRS Walls. Transportation Infrastructure Geotechnology, 7(3), 445-460. Douglas, P. A. (1974). Filter design criteria and their application. FHWA. (2009). Design and construction of mechanically stabilized earth walls and reinforced soil slopes-Volume I. U. S. Department of Transportation Federal Highway Administration, NHI-10-024. Koerner, R. M., and Koerner, G. R. (2013). A data base, statistics and recommendations regarding 171 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotextiles and Geomembranes, 40, 20-27. Koerner, R. M., & Koerner, G. R. (2018). An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotextiles and Geomembranes, 46(6), 904-912. Langhaar, H. L. (1951). Dimensional analysis and theory of models. Krieger. Lee, H., & Bobet, A. (2002). Design of MSE walls for fully saturated conditions. Joint Transportation Research Program, 51. Li, Z., Ye, W., Marence, M., & Bricker, J. D. (2018). Unsteady seepage behavior of an earthfill dam during drought-flood cycles. Geosciences, 9(1), 17. Liu, C.-N., Yang, K.-H., & Nguyen, M. D. (2014). Behavior of geogrid–reinforced sand and effect of reinforcement anchorage in large-scale plane strain compression. Geotextiles and Geomembranes, 42(5), 479-493. Miyata, Y., Bathurst, R. J., Otani, Y., Ohta, H., & Miyatake, H. (2015). Influence of transient flooding on steel strip reinforced soil walls. Soils and Foundations, 55(4), 881-894. NCMA. (2009). Design manual for segmental retaining walls. 3rd Ed. Herndon VA: National Concrete Masonry Association. Rajagopal, G., & Thiyyakkandi, S. (2021). Numerical evaluation of the performance of back-to-back MSE walls with hybrid select-marginal fill zones. Transportation Geotechnics, 26, 100445. Saran, R., & Viswanadham, B. (2018). Centrifuge model tests on the use of geosynthetic layer as an internal drain in levees. Geotextiles and Geomembranes, 46(3), 257-276. Vanapalli, S., Fredlund, D., Pufahl, D., & Clifton, A. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian geotechnical journal, 33(3), 379-392. Vieira, C. S., Lopes, M., & Caldeira, L. (2013). Soil-geosynthetic interface shear strength by simple and direct shear tests. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Viswanadham, B., & König, D. (2004). Studies on scaling and instrumentation of a geogrid. Geotextiles and Geomembranes, 22(5), 307-328. Watanabe, K., Nakajima, S., Fujii, K., Matsuura, K., Kudo, A., Nonaka, T., & Aoyagi, Y. (2020). Development of geosynthetic-reinforced soil embankment resistant to severe earthquakes and prolonged overflows due to tsunamis. Soils and Foundations, 60(6), 1371-1386. Wu, J., Ma, C., Pham, T., & Adams, M. (2011). Required minimum reinforcement stiffness and strength in geosynthetic-reinforced soil (GRS) walls and abutments. International Journal of Geotechnical Engineering, 5(4), 395-404. Wu, J. T., & Pham, T. Q. (2013). Load-carrying capacity and required reinforcement strength of closely spaced soil-geosynthetic composites. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1468-1476. Zornberg, J. G., & Arriaga, F. (2003). Strain distribution within geosynthetic-reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 32-45. Zornberg, J. G., Sitar, N., & Mitchell, J. K. (1998). Performance of geosynthetic reinforced slopes at failure. Journal of Geotechnical and Geoenvironmental Engineering, 124(8), 670-683. 鄭皆達、陳家暉、葉正霖,(2002),“台灣中部南湖溪集水區水文特性之研究”,水土保持學報,34(2),97-108。 吳淵洵、唐玄蕙,(2005),“加勁擋土結構破壞原因之案例探討”,第十一屆大地工程研討會。 陳榮河、紀柏全 (2010),“模型邊坡試驗之因次分析”,地工技術,125,7-14。 謝平城、林昭儀,(2010),“烏溪流域三角形單位歷線m值之研究”,水土保持學報,42(1),99-122。 蔡明宏,(2011),“三軸壓縮試驗下加勁土壤力學行為與加勁材應變發展之研究”, 碩士論文,國立臺灣科技大學,台北。 賴兆偉,(2018),“加勁基礎受正斷層作用之物理模型試驗研究”,碩士論文,國立臺灣科技大學,台北。 呂昕臻,(2019),“加勁擋土牆以含細粒料之回填土在降雨作用下之行為及改善方法評估”,碩士論文,國立臺灣大學,台北。 曾婷苓,(2020),“加勁擋土牆受降雨入滲作用下之物理模型試驗研究”,碩士論文,國立臺灣大學,台北。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85169 | - |
| dc.description.abstract | 加勁構造物為俱有良好施工性、經濟性及環境友善之柔性結構,近年來廣泛使用於國內之防災工程、邊坡整治、交通工程及環境保育。實務上,加勁結構物透過將加勁材料鋪設於回填土中以提升結構體的穩定性。然而,國內考量經濟成本及挖填方平衡,常使用富含細粒料之現地土壤做為回填材料。此回填土滲透性低且多為不飽和土壤,遇水後容易累積孔隙水壓力,喪失基質吸力造成土壤剪力強度下降,並伴隨結構體過分變形及破壞的發生。因此,採用富含細粒料回填土之加勁結構物是否能做為臨水護岸使用仍然存疑。 本研究進行一系列縮尺模型試驗,探討加勁擋土牆受洪水作用之力學行為及破壞機制。實驗縮尺率為 N = 5,模擬3公尺高之現地擋土牆。試驗分為五組,評估不同加勁材材料勁度及間距對於擋土牆穩定性的影響。在原型尺度下,以加勁間距75公分作為基本案例,探討在同樣間距下使用加倍勁度與三倍勁度之加勁材料,以及不改變加勁材勁度並採用37.5及25公分加勁間距,是否能有效提升整體穩定。本試驗透過量測水分及水壓分布情形、牆體變形及加勁材應變發展,結合影像分析技術,討論加勁擋土牆於水分入滲的過程中所產生的破壞機制及改善成效。 實驗結果顯示擋土牆發生三階段漸進式破壞:水分入滲引致土壤有效應力下降,牆面隨之變形形成剪力裂縫;牆體發生主動破壞並且過分變形,隨後水面上之塊體因重力作用傾覆,形成完整滑動面及牆頂張力裂縫;急洩降使得變形及破壞弧發展加劇。此外,分析結果指出,以縮小間距作為改善方式可於第一階段隨即抑制牆面變形,而加強勁度則是於第二階段提供較顯著的改善。顯示出在妥善設計下,加勁擋土牆可做為臨水護岸使用。在研究的最後更以實務常使用之土壓力法評估各層加勁材之最大張力發展,發現土壓力法有低估的現象。 | zh_TW |
| dc.description.abstract | Geosynthetic reinforced soil (GRS) retaining walls have been extensively adopted as alternatives to conventional gravity walls in earthwork construction due to their flexibility, eco-friendliness, ease of construction, and higher differential settlement tolerance, etc. In engineering practice, marginal soil is commonly used as a backfill for GRS walls, but the strength of marginal soil can be substantially reduced during water seeping, results in reduced wall stability. Thus, the application of GRS walls as waterfront structures subject to rising water level still requires further investigation. This study performed a series of model tests to investigate the performance of flooded GRS walls. The influence of various reinforcement stiffnesses and vertical spacings in improving wall stability was evaluated. Test models with a scaling factor N = 5 were used to model 3-meter prototype GRS walls subjected to flood up to two third of the wall height. The phreatic surface level, wall deformation, and mobilized reinforcement tensile strain were monitored and analyzed. The test results indicate the GRS wall developed a progressive failure: (1) The soil lost strength and formed shear cracks near the wall face during flood level rising. (2) The soil actively failed and generated excessive wall deformation. (3) The wall deformation further increased due to rapid drawdown. The test results found that decreasing reinforcement spacing has better efficiency in enhancing wall stability and reducing wall deformation than increasing reinforcement stiffness. Based on the test results, this research discusses the design implications for GRS walls as waterfront protection structures. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:47:55Z (GMT). No. of bitstreams: 1 U0001-0808202208310900.pdf: 10479929 bytes, checksum: f4543c44df5669d428c0991cf72fdbcf (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgement i 摘要 ii Abstract iii Table of Contents iv List of Tables vii List of Figures viii Chapter 1 Introduction 1.1 Research background and motivation 1 1.2 Research objectives 3 1.3 Research layout 3 Chapter 2 Literature Review 2.1 Design methods of GRS structures 6 2.2 Performance of GRS structures subjected to flood 11 2.2.1 Case study 11 2.2.2 Physical model tests 16 2.2.3 Numerical analyses 20 2.3 Scaling laws 25 2.3.1 Similitude law 25 2.3.2 Dimensional analysis 29 Chapter 3 Soil and Reinforcement Properties 3.1 Soil properties 32 3.1.1 Soil physical properties 33 3.1.2 Soil hydraulic characteristics 36 3.1.3 Soil engineering properties 38 3.2 Reinforcement properties 40 3.3 Soil-geogrid interface properties 43 Chapter 4 Model Tests and Test Program 4.1 Model design 46 4.1.1 Model similarity 46 4.1.2 Model configuration 47 4.1.3 Flood level 52 4.1.4 Improvement measures design 55 4.2 Instrumentation 56 4.2.1 Specifications and calibrations of the measuring devices 56 4.2.2 Photography equipment 64 4.3 Test procedures and test repeatability 65 4.3.1 Test procedures 65 4.3.2 Analyses of measured data 70 4.3.3 Test repeatability 74 4.4 Test program 77 Chapter 5 Experimental Results 5.1 Baseline case (Test SM 15) 78 5.1.1 Failure mechanism 88 5.2 Influence of the stiffness increase 91 5.2.1 Test SM 15-2J 91 5.2.2 Test SM 15-3J 100 5.3 Influence of the spacing reduction 108 5.3.1 Test SM 7.5 108 5.3.2 Test SM 5 116 Chapter 6 Overall Comparison 6.1 Phreatic surface level 123 6.2 Final failure surface 125 6.3 Wall displacement and settlement 131 6.4 Reinforcement tensile strain 134 6.5 Comparison with design method 136 6.5.1 Discussions on the earth pressure method 136 6.5.2 Discussions on the influence of reinforcement spacing 139 Chapter 7 Conclusions and Recommendations 7.1 Conclusions 140 7.2 Recommendations 142 References 143 Questions and Suggestions from the Panels 146 A.Professor Ching Hung 146 B.Professor Nelson Chou 147 C.Professor Zheng-Yi Feng 148 | |
| dc.language.iso | en | |
| dc.subject | 縮模實驗 | zh_TW |
| dc.subject | 破壞機制 | zh_TW |
| dc.subject | 臨水護岸 | zh_TW |
| dc.subject | 邊際回填土 | zh_TW |
| dc.subject | 加勁擋土牆 | zh_TW |
| dc.subject | Failure mechanism | en |
| dc.subject | Marginal backfill | en |
| dc.subject | Model test | en |
| dc.subject | Waterfront protection structure | en |
| dc.subject | GRS Walls | en |
| dc.title | 以加勁擋土牆作為臨水護岸之模型試驗 | zh_TW |
| dc.title | Model Tests on Geosynthetic-Reinforced Soil Walls as River Banks Protection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周南山(Nelson N. S. Chou),馮正一(Zheng-Yi Feng),洪瀞(Ching Hung) | |
| dc.subject.keyword | 臨水護岸,加勁擋土牆,破壞機制,縮模實驗,邊際回填土, | zh_TW |
| dc.subject.keyword | GRS Walls,Waterfront protection structure,Failure mechanism,Model test,Marginal backfill, | en |
| dc.relation.page | 150 | |
| dc.identifier.doi | 10.6342/NTU202202130 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-12 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202208310900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
