Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡瑞彬(Jui-Pin Tsai)
dc.contributor.authorSin-Wei Yehen
dc.contributor.author葉欣瑋zh_TW
dc.date.accessioned2023-03-19T22:47:32Z-
dc.date.copyright2022-10-19
dc.date.issued2022
dc.date.submitted2022-09-26
dc.identifier.citation1. Giorgia Dalla Santa, Antonio Galgaro, Raffaele Sassi, Matteo Cultrera, Paolo Scotton, Johannes Mueller, David Bertermann, Dimitrios Mendrinos, Riccardo Pasquali, Rodolfo Perego, Sebastian Pera, Eloisa Di Sipio, Giorgio Cassiani, Michele De Carli, Adriana Bernardi (2020). An updated ground thermal properties database for GSHP applications, Geothermics, 85, 101758. 2. Hatch, C. E., Fisher, A. T., Revenaugh, J. S., Constantz, J., & Ruehl, C. (2006). Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resources Research, 42(10). 3. Heron, Gorm & Lachance, John & Baker, Ralph. (2013). Removal of PCE DNAPL from tight clays using in situ thermal desorption. Groundwater Monitoring & Remediation. 33(4). 4. Illman, W. A., Berg, S. J., & Yeh, T.-C. J. (2012). Comparison of approaches for predicting solute transport: Sandbox experiments. Ground Water, 50(3), 421-431. 5. Jonthan Istok (1989). Groundwater Modeling by the Finite Element, The United State of America: the American Geophysical Union. 6. Keery, J., A. Binley, N. Crook, and J. W. N. Smith (2007), Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series, J Hydrol, 336(1-2), 1-16. 7. Márk Somogyvári, Peter Bayer, Ralf Brauchler (2015). Travel-time-based thermal tracer tomography, Hydrol. Earth Syst. Sci., 20, 1885–1901. 8. Mary P. Anderson (2005). Heat as a Ground Water Tracer, Heat as a groundwater tracer. Groundwater, 43(6), 951– 968. 9. McCallum, A. M., M. S. Andersen, G. C. Rau, and R. I. Acworth (2012), A 1-D analytical method for estimating surface water-groundwater interactions and effective thermal diffusivity using temperature time series, Water Resour Res, 48. 10. N. Simon, O. Bour, N. Lavenant, G. Porel, B. Nauleau, B. Pouladi, L. Longuevergne, A. Crave (2021). Numerical and experimental validation of the applicability of active-DTS experiments to estimate thermal conductivity and groundwater flux in porous media, Water Resour. Res., 57 11. Pengchao Li, Fang Guo, Xudong Yang (2022). An inversion method to estimate the thermal properties of heterogeneous soil for a large-scale borehole thermal energy storage system, Energy and Buildings, 263, 112045. 12. Q. Wang, S. Guo, M. Ali, X. Song, Z. Tang, Z. Zhang, M. Zhang, Y. Luo (2022), Thermally enhanced bioremediation: a review of the fundamentals and applications in soil and groundwater remediation, J. Hazard. Mater., 433, 128749. 13. R.S. Baker, S.G. Nielsen, G. Heron, N. Ploug (2016), How effective is thermal remediation of DNAPL source zones in reducing groundwater concentrations?, Ground Water Monit. Remed., 36 (1), 38-53. 14. Schmidt, C., B. Conant, M. Bayer-Raich, and M. Schirmer (2007), Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures, J Hydrol, 347(3-4), 292-307. 15. Sophocleous, M. (1979). Analysis of water and heat flow in unsaturated‐saturated porous media. Water Resources Research, 15(5), 1195-1206. 16. Tso, M., C. H., Zha, Y., Yeh, T.-C. J., & Wen, J. C. (2016). The relative importance of head, flux, and prior information in hydraulic tomography analysis. Water Resources Research, 52(1), 3-20. 17. Uchida, Y., and T. Hayashi (2005), Effects of hydrogeological and climate change on the subsurface thermal regime in the Sendai Plain, Phys Earth Planet In, 152(4), 292-304. 18. Yeh, T. C. J., & Liu, S. (2000). Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36(8), 2095-2105. 19. Yeh, T. C., Khaleel, R., & Carroll, K. C. (2015). Flow through heterogeneous geologic media. Cambridge University Press. 20. Yongkoo Seol, Hubao Zhang, Frank Schwartz (2003). A Review of In Situ Chemical Oxidation and Heterogeneity. Environmental & Engineering Geoscience, 9, 37-49. 21. Zha, Y., Yeh, T.-C. J., Illman, W. A., Tanaka, T., Bruines, P., Onoe, H., Saegusa, H., Mao, D., Takeuchi, S., & Wen, J. C. (2016). An Application of Hydraulic Tomography to a Large‐Scale Fractured Granite Site, Mizunami, Japan. Groundwater, 54, 793-804.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85163-
dc.description.abstract溫度為描述地層狀態的重要指標,亦是影響地下水流場的主因之一。在污染整治或是地熱能交換等有大量熱能產生與交換的研究中,量化溫度對地下水流場的影響更為重要,然此類研究大多忽略水力參數受溫度的影響,且多數研究皆假設熱傳參數場為均質,導致無法準確描述地下水流場及溫度場分布。而為了求得準確的流場及溫度場,本研究開發融合水位與溫度資訊之聯合反演模式,此模式包含三維水流與熱流耦合模擬模式(正演模式)與融合溫度與水位的水力與熱傳參數推估模式(反演模式)。此推估模式以水力掃描概念為基礎,提出融合溫度與水位資訊的演算法,可同時推估三維水力及熱傳參數場。此外,本研究將正演模式與反演模式開發完成後,以多組數值試驗進行正演與反演模式之測試與檢驗。研究結果顯示:(1)考量水流與熱流之交互影響下,融合水位與溫度資訊可同時改善水力與熱傳參數場之推估結果。(2)背景地下水流速之快慢不會影響熱傳參數之推估結果。(3)在地下水溫度變化顯著的條件下,進行水力與熱傳參數的聯合反演可求得更精確之參數場,展現本方法之效益。本研究提出之聯合反演模式可有效推估地層中之三維水力與熱傳參數場,精確地模擬地下水流場與溫度場,未來將可作為污染整治與淺層地熱交換系統設計等研究之基礎。zh_TW
dc.description.abstractSubsurface temperature is a crucial indicator to represent the status of the stratum and one of the important factors affecting the groundwater flow field. For the case with abundant thermal energy production or exchange (e.g., contamination oxidation or geothermal energy exchange), quantifying the effect of temperature change on the groundwater fields is an important issue. However, most of these studies neglect the effect of temperature variations on the hydraulic properties and assume the thermal parameter fields are homogenous, causing inaccurate geothermal and groundwater flow field predictions. To obtain accurate flow and geothermal fields, we have developed a joint inversion method consisting of a coupled three-dimensional groundwater and heat transport model and a joint inversion algorithm. The inversion algorithm is developed based on the concept of hydraulic tomography(HT) and successive linear estimator(SLE). Several numerical experiments have been designed to examine the proposed joint inversion model. The main findings include: (1) The joint inversion method can simultaneously improve the hydraulic and thermal properties fields based on the coupled groundwater and heat transport model. (2) Background flow field influences the estimated thermal conductivity fields less. (3) When significant temperature changes occur in groundwater, joint interpolating the head and temperature measurements are essential to derive the accurate parameter fields and accurately predict groundwater flow and thermal fields. The study results can be valuable for geothermal energy exchange and contaminated site remediation studies.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:47:32Z (GMT). No. of bitstreams: 1
U0001-2609202216051300.pdf: 6123342 bytes, checksum: d92afcbd9eee67838b9a22f9c7a40111 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌 謝 I 摘 要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 IX 參數對照表 X 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 研究架構 2 第二章 文獻回顧 3 第三章 研究方法 6 3.1 整體研究流程 6 3.2 三維水流與熱流耦合模擬模式開發 7 3.2.1 數學模型 7 3.2.2 有限元素法之離散方程式建立 9 3.2.3 數值模型 11 3.3 融合溫度與水位水力與熱傳參數推估模式建置 13 3.3.1 循序線性迭代推估器(Successively linear estimator, SLE) 13 3.3.2 水力與熱傳參數聯合反演模式 16 3.4 數值試驗設計 19 3.4.1 第一組試驗:正演模式正確性分析 19 3.4.2 第二組試驗:單向水流與熱流試驗 21 3.4.3 第三組試驗:模擬砂箱尺度之數值試驗 26 3.4.4 第四組試驗:模擬現地尺度之數值試驗 32 第四章 研究成果 37 4.1 第一組試驗結果 37 4.2 第二組試驗結果 40 4.2.1 溫度對K場之影響分析 40 4.2.2 熱傳SLE驗證 40 4.2.3 聯合推估系統驗證 42 4.3 第三組試驗結果 47 4.4 第四組試驗結果 59 第五章 結論與建議 70 5.1 結論 70 5.2 建議 70 參考文獻 71 附錄(一) 水之熱動力性質公式說明 74 附錄(二) 黏滯係數公式說明 79
dc.language.isozh-TW
dc.title融合地下水位與溫度資料於地層三維水力及熱傳參數異質場推估zh_TW
dc.titleEstimating Three-Dimensional Subsurface Hydraulic and Thermal Heterogeneity by Fusion of Temperature and Groundwater Level Dataen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余化龍(Hwa-Lung Yu),王昱力(Yu-Li Wang),徐國錦(Kuo-Chin Hsu),葉信富(Hsin-Fu Yeh)
dc.subject.keyword資料融合,聯合反演,參數推估,水文地質參數,熱傳參數,zh_TW
dc.subject.keyworddata fusion,joint inversion,parameter estimation,hydrogeological parameters,geothermal parameters,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202204096
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2027-09-01-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-2609202216051300.pdf
  目前未授權公開取用
5.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved